SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rydin Håkan Professor) "

Sökning: WFRF:(Rydin Håkan Professor)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, Charles, 1982- (författare)
  • Sphagnum limits : Physiology, morphology and climate
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Sphagnum is the most important plant genus in terms of terrestrial carbon cycling. It and the habitats it creates store an equivalent of ~68% of the CO2 in the atmosphere. The genus has little dispersal limitation and the mire habitats are functionally similar at global scales. Sphagnum species are limited by water deficit at local and biogeographic scales, but this alone is not sufficient to explain local and global scale species patterns. As Sphagnum shoots are long-lived they may be limited by stochastic periods of cold temperature. Within Europe, species are associated with climate gradients along north-south (cold-warm) and oceanic-continental (wet-dry) clines. Within mires, species are sorted along a moisture (hummock-hollow) gradient.In this thesis I examined species responses to and recovery from freezing (I). I compared species with different water level niches in traits related to water management of individual shoots and colonies (II). Using distribution modelling of GBIF data, I estimated how different aspects of climate contributed to Sphagnum species distributions in Europe (III). Combining the approaches in papers II and III, I modelled the climatic distributions of the parapatric species S. cuspidatum and S. lindbergii and assessed how traits of water economy varied across the distribution boundary (IV).Species responses to winter stress were largely allied to both their hydrological niche and geographic range. Generally, hollow species managed better than hummock species, but species from intermediate positions were less consistent in their response. Species associated with boreal regions were generally less affected than those from temperate regions. Hardening against low temperature was triggered by shorter days and cold nights. Cold temperatures during late autumn may be more important for Sphagnum limits than the minimum temperature during winter.Water-related traits split the species into two groups; hollows species with large capitula and hummock species with small capitula. However, inter- and intra-specific trait variation and trait trends along the hydrological gradient were not necessarily the same at the shoot and canopy scale. Some trait correlations were common to all species. Canopy traits, which were emergent traits of colonies of shoots, had the strongest trait associations with the species position along the hummock-hollow gradient.At the continental scale the distribution of most Sphagnum species could be successfully modelled by a combination of annual degree days and water balance and the degree of seasonality in these two variables. Individual species distributions were shaped more by the seasonality in degree days than in water balance.Across the distributional border of S. cuspidatum and S. lindbergii divergence in the measured traits was mostly seen in the capitula indicating that limits to Sphagnum species are strongly linked to the functioning of the capitulum. Capitulum mass of both species was lower in sympatry than in allopatry, even though the measured values were similar. Canopy traits most strongly separated the species though did not change across the species boundaries.In summary, Sphagnum species in general are limited by the availability of water. Low temperature, particularly during late autumn are probably decisive for the biogeographic limits and for the distribution of species along the hydrological gradient.
  •  
2.
  • Löbel, Swantje, 1978- (författare)
  • Metapopulation and metacommunity processes, dispersal strategies and life-history trade-offs in epiphytes
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this thesis was to increase knowledge about metapopulation and metacommunity processes in patchy, dynamic landscapes, using epiphytic bryophytes as a model system. Host trees and deciduous forest stands in the coniferous landscape are patchy, temporal and undergo changes in habitat quality during succession. Epiphytes must track this dynamic habitat network for their long-term survival. Community patterns at different spatial scales were explored and linked to regional metapopulation processes and local population dynamics. Spatial structuring in species richness both at a local and regional scale indicated stronger dispersal limitation but lower sensitivity to habitat quality in species with large asexual than in species with small sexual diaspores. In sexually dispersed species, a strong rescue effect was indicated by a bimodal frequency distribution of the species and by increasing local abundance with increasing patch connectivity. Present connectivity to other deciduous forest patches had positive effects on richness of asexually dispersed species, whereas richness of sexually dispersed species was instead related to the landscape connectivity 30 years ago. A study of local growth and reproduction suggested that this is caused by delayed sexual, but not asexual, reproduction. Habitat conditions affected the production of sporophytes, but not of asexual diaspores. No differences in either growth rates or competitive abilities among species with different dispersal and life-history strategies were found. In vitro experiments showed that establishment is higher from large asexual diaspores than from small sexual. Establishment of all diaspore types was limited by pH. There were indications of trade-offs between high germination and protonemal growth rates, desiccation tolerance and a rapid development of shoots from protonema. The results indicated that the epiphyte metacommunity is structured by two main trade-offs: dispersal distance (diaspore size) versus age at first reproduction, and dispersal distance versus sensitivity to habitat quality. Trade-offs in species traits may have evolved as a consequence of conflicting selection pressures imposed by habitat turnover, connectivity and irregular water supply rather than by species interactions. Syndromes of interrelated species traits imply that fairly small changes in habitat conditions can lead to distinct changes in metacommunity diversity: the results indicate that increasing distances among patches cause most harm to asexually dispersed species, whereas cuttings of forests of high age and quality as well as increasing patch dynamics are most harmful to sexually dispersed species.
  •  
3.
  • Mälson, Kalle, 1975- (författare)
  • Plant responses after drainage and restoration in rich fens
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Rich fens are an important, but threatened, habitat type in the boreal landscape. In this thesis I have examined responses of rich fen vascular plants and bryophytes after drainage and restoration.The effects of drainage on the rich fen flora were observed in a long time study and the responses were rapid and drastic. During an initial stage a rapid loss of brown mosses was observed, followed by increases of sedges and early successional bryophytes, and later by an expansion of dominants. Initial effects of hydrological restoration showed that rewetting can promote re-establishment of an ecologically functional rich fen flora, but has to be combined with other treatments, such as mowing or surface disturbance.After restoration, re-establishment of locally extinct species may be hampered by dispersal limitations. To test if reintroductions could help to overcome dispersal limitations I performed transplantation studies with four common rich fens bryophytes to a rewetted site. The results showed that the species were able to establish, and that survival and growth were promoted by desiccation protection and liming.I further examined competition among three of the most common bryophytes in natural boreal rich fens that usually occur mixed in a mosaic pattern but show small but important microtopographical niche separation. The results indicate similar competitive abilities among the species, and no case of competitative exclusion occurred. The results help to explain the coexistence of these species under natural conditions with microtopographic variation and repeated small scale natural disturbances.Restoring a functional flora in drained rich fens is a complex task, which requires understanding of underlying causes of substrate degradation in combination with suitable restoration measures. The thesis suggests how the results can be used in practical restoration work, and also stresses the need for monitoring of restoration experiments over longer time.
  •  
4.
  • Bengtsson, Fia, 1986- (författare)
  • Functional Traits in Sphagnum
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Peat mosses (Sphagnum) are ecosystem engineers that largely govern carbon sequestration in northern hemisphere peatlands. I investigated functional traits in Sphagnum species and addressed the questions: (I) Are growth, photosynthesis and decomposition and the trade-offs between these traits related to habitat or phylogeny?, (II) Which are the determinants of decomposition and are there trade-offs between metabolites that affect decomposition?, (III) How do macro-climate and local environment determine growth in Sphagnum across the Holarctic?, (IV) How does N2 fixation vary among different species and habitats?, (V) How do species from different microtopographic niches avoid or tolerate desiccation, and are leaf and structural traits adaptations to growth high above the water table?Photosynthetic rate and decomposition in laboratory conditions (innate growth and decay resistance) were related to growth and decomposition in their natural habitats. We found support for a trade-off between growth and decay resistance, but innate qualities translated differently to field responses in different species. There were no trade-offs between production of different decay-affecting metabolites. Their production is phylogenetically controlled, but their effects on decay are modified by nutrient availability in the habitat. Modelling growth of two species across the Holarctic realm showed that precipitation, temperature and vascular plant cover are the best predictors of performance, but responses were stronger for the wetter growing species. N2 fixation rates were positively related to moss decomposability, field decomposition and tissue phosphorus concentration. Hence, higher decomposition can lead to more nutrients available to N2-fixing microorganisms, while higher concentrations of decomposition-hampering metabolites may impede N2 fixation. A mesocosm experiment, testing effects of water level drawdown on water content and chlorophyll fluorescence, showed that either slow water loss or high maximum water holding capacity can lead to desiccation avoidance. Furthermore, leaf anatomical traits rather than structural traits affected the water economy.This thesis has advanced the emerging field of trait ecology in Sphagnum by comparing many species and revealing novel mechanisms and an ever more complex picture of Sphagnum ecology. In addition, the species-specific trait measurements of this work offers opportunities for improvements of peatland ecosystem models.
  •  
5.
  • Granath, Gustaf (författare)
  • Peatland Bryophytes in a Changing Environment : Ecophysiological Traits and Ecosystem Function
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Peatlands are peat forming ecosystems in which not fully decomposed plant material builds up the soil. The sequestration of carbon into peat is mainly associated with the bryophyte genus Sphagnum (peat mosses), which dominate and literally form most peatlands. The responses of Sphagnum to environmental change help us to understand peatland development and function and to predict future changes in a rapidly changing world. In this thesis, the overarching aim was to use ecophysiological traits to investigate mechanisms behind the response of Sphagnum to elevated N deposition, and, processes connected to ecosystem shift and ecosystem function of peatlands. Regarding elevated N deposition, three experiments were performed at different scales (country-wide to greenhouse). Independent of scale and species, apical tissue N concentration increased with increasing N input until N saturation was reached. Maximum photosynthetic rate, a trait evaluating photosynthetic capacity, increased with N input and could be well predicted by tissue N concentration. Thus, the physiological responses of Sphagnum to N deposition are often positive and I found no evidence of toxic effects. Production did, however, not increase with N input, and results of the N:P ratio suggested that P limitation, and possibly other elements, might hamper growth under high N input. The effect of P limitation was, in contrast to current view, most pronounced in fast growing species indicating species specific responses to nutrient imbalance. I explored the puzzling, but historically frequently occurring, rich fen to bog ecosystem shift; a shift from a species-rich ecosystem dominated by brown mosses, to a species-poor one with greater carbon storage that is Sphagnum-dominated. The bog-dwelling species of Sphagnum grew well, to our surprise, when in contact with rich fen water but was not a strong competitor compared to rich fen Sphagnum species. If submerged under rich fen water (high pH), the bog Sphagnum species died while rich fen species of Sphagnum were unaffected. These results show that differences in two physiological traits (growth rate and tolerance to flooding) among species, can explain when a peatland ecosystem shift might occur. In the last study, the function of peatlands was related to trade-offs between traits and allometric scaling in Sphagnum. Results suggested that growth strategies are determined by the distribution of Sphagnum relative to the water table in order to minimize periods with suboptimal hydration. Allometric analyses stressed the importance of resource allocation among and within shoots (apical part vs. stem), although the allocation patterns in Sphagnum were not always consistent with those of vascular plants. Interestingly, data indicated a trade-off between photosynthetic rate and decomposition rate among Sphagnum species.
  •  
6.
  • Wiklund, Karin, 1957- (författare)
  • Establishment, Growth and Population Dynamics in two Mosses of Old-growth Forests
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biodiversity in forests depends on long canopy continuity and existence of different elements which function as substrates for varying organisms. Bryophytes often occupy specific substrates with a patchy distribution. The aim of this thesis was to increase the ecological knowledge about two threatened moss species; Buxbaumia viridis, inhabiting decaying wood, and Neckera pennata, inhabiting bark of base-rich deciduous trees. Establishment from spores was investigated in Buxbaumia viridis and Neckera pennata and models were created to predict germination of spores as a function of pH and water potential. The effects of pH, phosphorus and nitrogen concentration were studied in Buxbaumia viridis, both on spore germination and on sporophyte occurrences in the field. Colony growth in relation to precipitation and microhabitat variables was studied in Neckera pennata, and a model was used to predict growth of colonies over time. Metapopulation dynamics of Buxbaumia viridis were analyzed as an effect of precipitation, habitat quality and patch quantity. A spatial explicit patch occupancy model was constructed to simulate metapopulation sizes and extinction risk over 100 years.The quality of the substrate was very important for spore establishment. Germination success increased with increasing pH in both species. Buxbaumia viridis was less sensitive to low pH than Neckera pennata when water was freely available. However, there was a strong interaction between pH and water potential in prediction of the final cumulative germination: the spores reacted positively to one factor only when the other factor was in a favourable range.Precipitation, moisture holding capacity and interference competition were the main factors affecting colony growth of Neckera pennata. Buxbaumia viridis showed large fluctuations in number of occupied patches among years. Both colonizations and extinctions were highly related to precipitation. Spore germination and sporophyte occurrences in the field were positively related to phosphorus concentration and pH of the substrate.
  •  
7.
  • Zinko, Ursula, 1969- (författare)
  • Plants go with the flow : predicting spatial distribution of plant species in the boreal forest
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The main objectives of this thesis are to study if a topographic wetness index (TWI) could be used as a tool for predicting the spatial distribution of vascular plant species richness in the boreal forest as well as to study congruence in species richness between vascular plants, liverworts, mosses and lichens. A wetness index ln(a/tanβ) based on topography was used to assign a specific TWI-value to every 20 x 20m grid in two 25 km2 boreal forest landscapes (differing in average soil pH) in northern Sweden. Soil pH is known to be influenced by groundwater and to affect plant species richness in other biomes. Therefore, the relationships between plant species richness, TWI and soil pH were also studied. The results showed that the majority of the investigated boreal forest landscapes were relatively dry and species-poor, whereas interspersed patches linked to areas with relatively high TWI had species-rich vegetation including the species of the drier parts of the landscape. There was a positive relationship between species richness of vascular plants and the TWI in both landscapes, but varied with average soil pH. TWI explained 30 % and 52 % of the variation in plant species richness in the landscape with lower and higher pH, respectively. The proportion of regionally uncommon plants also increased with TWI. Testing different calculation methods of the TWI resulted in a large variation in correlation strengths between the various TWI-values and different measured variables (species richness of vascular plants, soil pH, groundwater flow and soil moisture). The relationship between plant species richness and TWI could be further improved with some of the calculation methods. When studying correlations in species richness using data sets from boreal forest in northern Sweden, strong positive correlations among vascular plants, mosses and liverworts were found, but no significant correlation between macrolichens and any of the other groups. This result could be explained by that the species number of each of the three related groups increases with ambient moisture, whereas the species number of macrolichens is weakly associated with moisture. In conclusion, the TWI could become a useful tool in conservation management for identifying areas of special interest prior to field inventories. Since vascular plants can be used as an indicator taxon for species richness of mosses and liverworts, high TWI-values indicate areas of species hotspots of these taxa.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy