SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sågetorp Jenny) "

Sökning: WFRF:(Sågetorp Jenny)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dyachok, Oleg, 1965-, et al. (författare)
  • Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion
  • 2008
  • Ingår i: Cell Metabolism. - : Cell Press. - 1550-4131 .- 1932-7420. ; 8:1, s. 26-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclic AMP (cAMP) and Ca2+ are key regulators of exocytosis in many cells, including insulin-secreting β-cells. Glucose-stimulated insulin secretion from β cells is pulsatile and involves oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i), but little is known about the detailed kinetics of cAMP signalling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the sub-membrane space of single MIN6-cells and primary mouse β-cells. These oscillations were preceded and enhanced by elevations of [Ca2+]i. However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca2+]i rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP, and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.
  •  
2.
  •  
3.
  •  
4.
  • Sågetorp, Jenny, 1980- (författare)
  • Cyclic AMP Oscillations in Insulin-Secreting Cells
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Cyclic AMP is an intracellular messenger that regulates numerous processes in various types of cells. In pancreatic β-cells, cAMP potentiates the secretion of insulin by promoting Ca2+ signals and by amplifying Ca2+-triggered exocytosis. Whereas Ca2+ signals have been extensively characterized, little is known about the kinetics of cAMP signals. To enable measurements of the cAMP concentration beneath the plasma membrane ([cAMP]pm) of individual cells, a translocation biosensor was created based on fluorescent-protein-tagged subunits of protein kinase A (PKA). Evanescent wave microscopy imaging of biosensor-expressing clonal β-cells revealed that the insulinotropic hormones glucagon and GLP-1 triggered pronounced oscillations in [cAMP]pm. Simultaneous measurements of the intracellular Ca2+ concentration showed that cAMP and Ca2+ oscillations were synchronized and interdependent. [cAMP]pm oscillations were also triggered in clonal and primary mouse β-cells by an elevation of the glucose concentration from 3 to 11 mM. These oscillations were preceded and enhanced by elevations of Ca2+. However, conditions raising cytoplasmic ATP could trigger cAMP elevations also without accompanying Ca2+ changes, indicating that adenylyl cyclase activity may be directly controlled by the substrate concentration. Experiments with 3-isobutylmethylxanthine (IBMX) and various family-selective phosphodiesterase (PDE) inhibitors indicated that [cAMP]pm oscillations are generated by periodic formation of the messenger by adenylyl cyclases. PDE1 and PDE3 as well as IBMX-insensitive mechanisms shape [cAMP]pm, but no single PDE isoform was required for glucose generation of [cAMP]pm oscillations. Recordings of single-cell insulin secretion kinetics with a fluorescent biosensor that reports formation of the phospholipid PIP3 in the plasma membrane in response to autocrine insulin receptor activation showed that [cAMP]pm oscillations were paralleled by pulsatile insulin release. Whereas adenylyl cyclase inhibition suppressed both [cAMP]pm oscillations and pulsatile insulin release, elevation of [cAMP]pm enhanced secretion. Investigation of the effects of different temporal patterns of [cAMP]pm showed that brief [cAMP]pm elevation is sufficient to trigger cytoplasmic responses, whereas sustained elevation is required to induce translocation of the PKA catalytic subunit into the nucleus. In conclusion, these studies demonstrate for the first time in mammalian cells that [cAMP]pm oscillates in response to physiological stimuli. The glucose-induced [cAMP]pm oscillations are generated by periodic cAMP production mediated by interplay between ATP and Ca2+ in the sub-membrane space, and may contribute to both triggering and amplifying pathways of insulin secretion. Apart from regulating the precise kinetics of insulin exocytosis, temporal encoding of cAMP signals might constitute a basis for differential regulation of downstream cellular targets.
  •  
5.
  •  
6.
  •  
7.
  • Tian, Geng, et al. (författare)
  • Role of phosphodiesterases in the shaping of sub-plasma-membrane cAMP oscillations and pulsatile insulin secretion
  • 2012
  • Ingår i: Journal of Cell Science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 125:21, s. 5084-5095
  • Tidskriftsartikel (refereegranskat)abstract
    • Specificity and versatility in cyclic AMP (cAMP) signalling are governed by the spatial localisation and temporal dynamics of the signal. Phosphodiesterases (PDEs) are important for shaping cAMP signals by hydrolyzing the nucleotide. In pancreatic β-cells, glucose triggers sub-plasma-membrane cAMP oscillations, which are important for insulin secretion, but the mechanisms underlying the oscillations are poorly understood. Here, we investigated the role of different PDEs in the generation of cAMP oscillations by monitoring the concentration of cAMP in the sub-plasma-membrane space ([cAMP](pm)) with ratiometric evanescent wave microscopy in MIN6 cells or mouse pancreatic β-cells expressing a fluorescent translocation biosensor. The general PDE inhibitor IBMX increased [cAMP](pm), and whereas oscillations were frequently observed at 50 µM IBMX, 300 µM-1 mM of the inhibitor caused a stable increase in [cAMP](pm). The [cAMP](pm) was nevertheless markedly suppressed by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine, indicating IBMX-insensitive cAMP degradation. Among IBMX-sensitive PDEs, PDE3 was most important for maintaining a low basal level of [cAMP](pm) in unstimulated cells. After glucose induction of [cAMP](pm) oscillations, inhibitors of PDE1, PDE3 and PDE4 inhibitors the average cAMP level, often without disturbing the [cAMP](pm) rhythmicity. Knockdown of the IBMX-insensitive PDE8B by shRNA in MIN6 cells increased the basal level of [cAMP](pm) and prevented the [cAMP](pm)-lowering effect of 2',5'-dideoxyadenosine after exposure to IBMX. Moreover, PDE8B-knockdown cells showed reduced glucose-induced [cAMP](pm) oscillations and loss of the normal pulsatile pattern of insulin secretion. It is concluded that [cAMP](pm) oscillations in β-cells are caused by periodic variations in cAMP generation, and that several PDEs, including PDE1, PDE3 and the IBMX-insensitive PDE8B, are required for shaping the sub-membrane cAMP signals and pulsatile insulin release.
  •  
8.
  • Wuttke, Anne, et al. (författare)
  • Distinct plasma-membrane PtdIns(4)P and PtdIns(4,5)P2 dynamics in secretagogue-stimulated β-cells
  • 2010
  • Ingår i: Journal of Cell Science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 123:9, s. 1492-1502
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphoinositides regulate numerous processes in various subcellular compartments. Whereas many stimuli trigger changes in the plasma-membrane PtdIns(4,5)P-2 concentration, little is known about its precursor, PtdIns(4)P, in particular whether there are stimulus-induced alterations independent of those of PtdIns(4,5)P-2. We investigated plasma-membrane PtdIns(4)P and PtdIns(4,5)P-2 dynamics in insulin-secreting MIN6 cells using fluorescent translocation biosensors and total internal reflection microscopy. Loss of PtdIns(4,5)P-2 induced by phospholipase C (PLC)-activating receptor agonists or stimulatory glucose concentrations was paralleled by increased PtdIns(4)P levels. In addition, glucose-stimulated cells regularly showed anti-synchronous oscillations of the two lipids. Whereas glucose-induced PtdIns(4)P elevation required voltage-gated Ca2+ entry and was mimicked by membrane-depolarizing stimuli, the receptor-induced response was Ca2+ independent, but sensitive to protein kinase C (PKC) inhibition and mimicked by phorbol ester stimulation. We conclude that glucose and PLC-activating receptor stimuli trigger Ca2+- and PKC-dependent changes in the plasma-membrane PtdIns(4)P concentration that are independent of the effects on PtdIns(4,5)P-2. These findings indicate that enhanced formation of PtdIns(4)P, apart from ensuring efficient replenishment of the PtdIns(4,5)P-2 pool, might serve an independent signalling function by regulating the association of PtdIns(4)P-binding proteins with the plasma membrane.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy