SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Söderlind Fredrik 1971 ) "

Sökning: WFRF:(Söderlind Fredrik 1971 )

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Atakan, Aylin, et al. (författare)
  • Synthesis of a Cu-infiltrated Zr-doped SBA-15 catalyst for CO2 hydrogenation into methanol and dimethyl ethert
  • 2017
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : ROYAL SOC CHEMISTRY. - 1463-9076 .- 1463-9084. ; 19:29, s. 19139-19149
  • Tidskriftsartikel (refereegranskat)abstract
    • A catalytically active nanoassembly comprising Cu-nanoparticles grown on integrated and active supports (large pore Zr-doped mesoporous SBA-15 silica) has been synthesized and used to promote CO2 hydrogenation. The doped mesoporous material was synthesized using a sal-gel method, in which the pore size was tuned between 11 and 15 nm while maintaining a specific surface area of about 700 m(2) g (1). The subsequent Cu nanoparticle growth was achieved by an infiltration process involving attachment of different functional groups on the external and internal surfaces of the mesoporous structure such that 7-10 nm sized Cu nanoparticles grew preferentially inside the pores. Chemisorption showed improved absorption of both CO2 and H-2 for the assembly compared to pure SBA-15 and 15% of the total CO2 was converted to methanol and dimethyl ether at 250 degrees C and 33 bar.
  •  
3.
  •  
4.
  • Buchholt, Kristina, 1978-, et al. (författare)
  • Electrochemically Synthesised Pd- and Au-nanoparticles as sensing layers in NOx-sensitive field effect devices
  • 2008
  • Ingår i: Smart Sensors and Sensing Technology. - Berlin, Heidelberg : Springer. - 9783540795896 - 9783540795902 ; , s. 63-75
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • An environmental pollutant of great concern is NOx (nitrogen monoxide and nitrogen dioxide). Here we report the utilisation of electrochemically synthesised gold and palladium nanoparticles as catalytically active gate material on gas sensitive field effect sensor devices. The synthesised nanoparticles have been characterised by TEM and XPS, and the morphology of the thermally treated nanostructured sensing layers has been investigated using SEM and XPS. Measurements on the gas response of the palladium as well as the gold nanoparticle sensors towards a number of analytes found in automotive gas exhausts were performed and their response patterns were compared. The initial gas response measurements show interesting sensing properties for both the gold and the palladium nanoparticle sensors towards NOx detection.
  •  
5.
  •  
6.
  •  
7.
  • Söderlind, Fredrik, 1971- (författare)
  • Colloidal synthesis of metal oxide nanocrystals and thin films
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A main driving force behind the recent years’ immense interest in nanoscience and nanotechnology is the possibility of achieving new material properties and functionalities within, e.g., material physics, biomedicine, sensor technology, chemical catalysis, energy storing systems, and so on. New (theoretical) possibilities represent, in turn, a challenging task for chemists and physicists. An important feature of the present nanoscience surge is its strongly interdisciplinary character, which is reflected in the present work.In this thesis, nanocrystals and thin films of magnetic and ferroelectric metal oxides, e.g. RE2O3 (RE = Y, Gd, Dy), GdFeO3, Gd3Fe5O12, Na0.5K0.5NbO3, have been prepared by colloidal and sol-gel methods. The sizes of the nanocrystals were in the range 3-15 nm and different carboxylic acids, e.g. oleic or citric acid, were chemisorbed onto the surface of the nanoparticles. From FT-IR measurements it is concluded that the bonding to the surface takes place via the carboxylate group in a bidentate or bridging fashion, with some preference for the latter coordination mode. The magnetic properties of nanocrystalline Gd2O3 and GdFeO3 were measured, both with respect to magnetic resonance relaxivity and magnetic susceptibility. Both types of materials exhibit promising relaxivity properties, and may have the potential for use as positive contrast enhancing agents in magnetic resonance imaging (MRI). The nanocrystalline samples were also characterised by transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and quantum chemical calculations.Thin films of Na0.5K0.5NbO3, GdFeO3 and Gd3Fe5O12 were prepared by sol-gel methods and characterized by x-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). Under appropriate synthesis conditions, rather pure phase materials could be obtained with grain sizes ranging from 50 to 300 nm. Magnetic measurements in the temperature range 2-350 K indicated that the magnetization of the perovskite phase GdFeO3 can be described as the sum of two contributing terms. One term (mainly) due to the spontaneous magnetic ordering of the iron containing sublattice, and the other a susceptibility term, attributable to the paramagnetic gadolinium sublattice. The two terms yield the relationship M(T)=M0(T)+χ(T)*H for the magnetization. The garnet phase Gd3Fe5O12 is ferrimagnetic and showed a compensation temperature Tcomp ≈ 295 K.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy