SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sörensen Esben S) "

Search: WFRF:(Sörensen Esben S)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Allentoft, Morten E., et al. (author)
  • Population genomics of post-glacial western Eurasia
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 301-311
  • Journal article (peer-reviewed)abstract
    • Western Eurasia witnessed several large-scale human migrations during the Holocene1–5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes—mainly from the Mesolithic and Neolithic periods—from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a ‘great divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 bp, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 bp, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
  •  
2.
  • Kirsebom, O. S., et al. (author)
  • First Accurate Normalization of the β -delayed α Decay of N 16 and Implications for the C 12 (α,γ) O 16 Astrophysical Reaction Rate
  • 2018
  • In: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 121:14
  • Journal article (peer-reviewed)abstract
    • Published by the American Physical Society. The C12(α,γ)O16 reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ11, of the bound 1- level in O16 is particularly important to determine the cross section. The magnitude of γ11 is determined via sub-Coulomb α-transfer reactions or the β-delayed α decay of N16, but the latter approach is presently hampered by the lack of sufficiently precise data on the β-decay branching ratios. Here we report improved branching ratios for the bound 1- level [bβ,11=(5.02±0.10)×10-2] and for β-delayed α emission [bβα=(1.59±0.06)×10-5]. Our value for bβα is 33% larger than previously held, leading to a substantial increase in γ11. Our revised value for γ11 is in good agreement with the value obtained in α-transfer studies and the weighted average of the two gives a robust and precise determination of γ11, which provides significantly improved constraints on the C12(α,γ) cross section in the energy range relevant to hydrostatic He burning.
  •  
3.
  • Fleming, Stephen A., et al. (author)
  • An expert panel on the adequacy of safety data and physiological roles of dietary bovine osteopontin in infancy
  • 2024
  • In: Frontiers in Nutrition. - : Frontiers Media S.A.. - 2296-861X. ; 11
  • Research review (peer-reviewed)abstract
    • Human milk, due to its unique composition, is the optimal standard for infant nutrition. Osteopontin (OPN) is abundant in human milk but not bovine milk. The addition of bovine milk osteopontin (bmOPN) to formula may replicate OPN’s concentration and function in human milk. To address safety concerns, we convened an expert panel to assess the adequacy of safety data and physiological roles of dietary bmOPN in infancy. The exposure of breastfed infants to human milk OPN (hmOPN) has been well-characterized and decreases markedly over the first 6 months of lactation. Dietary bmOPN is resistant to gastric and intestinal digestion, absorbed and cleared from circulation within 8–24 h, and represents a small portion (<5%) of total plasma OPN. Label studies on hmOPN suggest that after 3 h, intact or digested OPN is absorbed into carcass (62%), small intestine (23%), stomach (5%), and small intestinal perfusate (4%), with <2% each found in the cecum, liver, brain, heart, and spleen. Although the results are heterogenous with respect to bmOPN’s physiologic impact, no adverse impacts have been reported across growth, gastrointestinal, immune, or brain-related outcomes. Recombinant bovine and human forms demonstrate similar absorption in plasma as bmOPN, as well as effects on cognition and immunity. The panel recommended prioritization of trials measuring a comprehensive set of clinically relevant outcomes on immunity and cognition to confirm the safety of bmOPN over that of further research on its absorption, distribution, metabolism, and excretion. This review offers expert consensus on the adequacy of data available to assess the safety of bmOPN for use in infant formula, aiding evidence-based decisions on the formulation of infant formula.
  •  
4.
  • Holt, Carl, et al. (author)
  • Mineralisation of soft and hard tissues and the stability of biofluids.
  • 2014
  • In: Journal of Structural Biology. - : Elsevier BV. - 1095-8657 .- 1047-8477. ; 185:3, s. 383-396
  • Journal article (peer-reviewed)abstract
    • Evidence is provided from studies on natural and artificial biofluids that the sequestration of amorphous calcium phosphate by peptides or proteins to form nanocluster complexes is of general importance in the control of physiological calcification. A naturally occurring mixture of osteopontin peptides was shown, by light and neutron scattering, to form calcium phosphate nanoclusters with a core-shell structure. In blood serum and stimulated saliva, an invariant calcium phosphate ion activity product was found which corresponds closely in form and magnitude to the ion activity product observed in solutions of these osteopontin nanoclusters. This suggests that types of nanocluster complexes are present in these biofluids as well as in milk. Precipitation of amorphous calcium phosphate from artificial blood serum, urine and saliva was determined as a function of pH and the concentration of osteopontin or casein phosphopeptides. The position of the boundary between stability and precipitation was found to agree quantitatively with the theory of nanocluster formation. Artificial biofluids were prepared that closely matched their natural counterparts in calcium and phosphate concentrations, pH, saturation, ionic strength and osmolality. Such fluids, stabilised by a low concentration of sequestering phosphopeptides, were found to be highly stable and may have a number of beneficial applications in medicine.
  •  
5.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view