SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sønderby Ida E.) "

Sökning: WFRF:(Sønderby Ida E.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sønderby, Ida E., et al. (författare)
  • 1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
  • 2021
  • Ingår i: Translational Psychiatry. - : Nature Publishing Group. - 2158-3188. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.
  •  
2.
  • van der Meer, Dennis, et al. (författare)
  • Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition
  • 2020
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 77:4, s. 420-430
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Recurrent microdeletions and duplications in the genomic region 15q11.2 between breakpoints 1 (BP1) and 2 (BP2) are associated with neurodevelopmental disorders. These structural variants are present in 0.5% to 1.0% of the population, making 15q11.2 BP1-BP2 the site of the most prevalent known pathogenic copy number variation (CNV). It is unknown to what extent this CNV influences brain structure and affects cognitive abilities.Objective: To determine the association of the 15q11.2 BP1-BP2 deletion and duplication CNVs with cortical and subcortical brain morphology and cognitive task performance.Design, Setting, and Participants: In this genetic association study, T1-weighted brain magnetic resonance imaging were combined with genetic data from the ENIGMA-CNV consortium and the UK Biobank, with a replication cohort from Iceland. In total, 203 deletion carriers, 45 247 noncarriers, and 306 duplication carriers were included. Data were collected from August 2015 to April 2019, and data were analyzed from September 2018 to September 2019.Main Outcomes and Measures: The associations of the CNV with global and regional measures of surface area and cortical thickness as well as subcortical volumes were investigated, correcting for age, age2, sex, scanner, and intracranial volume. Additionally, measures of cognitive ability were analyzed in the full UK Biobank cohort.Results: Of 45 756 included individuals, the mean (SD) age was 55.8 (18.3) years, and 23 754 (51.9%) were female. Compared with noncarriers, deletion carriers had a lower surface area (Cohen d = -0.41; SE, 0.08; P = 4.9 × 10-8), thicker cortex (Cohen d = 0.36; SE, 0.07; P = 1.3 × 10-7), and a smaller nucleus accumbens (Cohen d = -0.27; SE, 0.07; P = 7.3 × 10-5). There was also a significant negative dose response on cortical thickness (β = -0.24; SE, 0.05; P = 6.8 × 10-7). Regional cortical analyses showed a localization of the effects to the frontal, cingulate, and parietal lobes. Further, cognitive ability was lower for deletion carriers compared with noncarriers on 5 of 7 tasks.Conclusions and Relevance: These findings, from the largest CNV neuroimaging study to date, provide evidence that 15q11.2 BP1-BP2 structural variation is associated with brain morphology and cognition, with deletion carriers being particularly affected. The pattern of results fits with known molecular functions of genes in the 15q11.2 BP1-BP2 region and suggests involvement of these genes in neuronal plasticity. These neurobiological effects likely contribute to the association of this CNV with neurodevelopmental disorders.
  •  
3.
  • Boen, Rune, et al. (författare)
  • Beyond the global brain differences : intraindividual variability differences in 1q21.1 distal and 15q11.2 bp1-bp2 deletion carriers
  • 2024
  • Ingår i: Biological Psychiatry. - 0006-3223 .- 1873-2402. ; 95:2, s. 147-160
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional differences beyond global differences in brain structure.Methods: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n = 30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual's regional difference and global difference, were used to test for regional differences that diverge from the global difference.Results: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness.Conclusions: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms involved in altered neurodevelopment.
  •  
4.
  • Córdova-Palomera, Aldo, et al. (författare)
  • Genetic control of variability in subcortical and intracranial volumes
  • 2021
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184 .- 1476-5578. ; 26:8, s. 3876-3883
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.
  •  
5.
  • Hughes, Timothy, et al. (författare)
  • A Loss-of-Function Variant in a Minor Isoform of ANK3 Protects Against Bipolar Disorder and Schizophrenia.
  • 2016
  • Ingår i: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 80:4, s. 323-330
  • Tidskriftsartikel (refereegranskat)abstract
    • Ankyrin-3 (ANK3) was one of the first genes to reach significance in a bipolar disorder genome-wide association study. Many subsequent association studies confirmed this finding and implicated this gene in schizophrenia. However, the exact nature of the role of ANK3 in the pathophysiology remains elusive. In particular, the specific isoforms involved and the nature of the imbalance are unknown.
  •  
6.
  • van der Meer, Dennis, et al. (författare)
  • The role of liver fat in cardiometabolic diseases is highlighted by genome-wide association study of MRI-derived measures of body composition
  • 2022
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background & AimsObesity and associated morbidities, metabolic associated liver disease (MAFLD) included, constitute some of the largest public health threats worldwide. Body composition and related risk factors are known to be heritable and identification of their genetic determinants may aid in the development of better prevention and treatment strategies. Recently, large-scale whole-body MRI data has become available, providing more specific measures of body composition than anthropometrics such as body mass index. Here, we aimed to elucidate the genetic architecture of body composition, by conducting the first genome-wide association study (GWAS) of these MRI-derived measures.MethodsWe ran both univariate and multivariate GWAS on fourteen MRI-derived measurements of adipose and muscle tissue distribution, derived from scans from 34,036 White European UK Biobank participants (mean age of 64.5 years, 51.5% female).ResultsThrough multivariate analysis, we discovered 108 loci with distributed effects across the body composition measures and 256 significant genes primarily involved in immune system functioning. Liver fat stood out, with a highly discoverable and oligogenic architecture and the strongest genetic associations. Comparison with 21 common cardiometabolic traits revealed both shared and specific genetic influences, with higher mean heritability for the MRI measures (h2=.25 vs. .16, p=1.4×10−6). We found substantial genetic correlations between the body composition measures and a range of cardiometabolic diseases, with the strongest correlation between liver fat and type 2 diabetes (rg=.48, p=1.6×10−22).ConclusionsThese findings show that MRI-derived body composition measures complement conventional body anthropometrics and other biomarkers of cardiometabolic health, highlighting the central role of liver fat, and improving our knowledge of the genetic architecture of body composition and related diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (5)
annan publikation (1)
Typ av innehåll
refereegranskat (5)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Westlye, Lars T (5)
Andreassen, Ole A (5)
Kaufmann, Tobias (5)
van der Meer, Dennis (5)
Frei, Oleksandr (5)
Agartz, Ingrid (4)
visa fler...
Djurovic, Srdjan (4)
Nyberg, Lars, 1966- (4)
Jönsson, Erik G. (4)
Le Hellard, Stephani ... (4)
Espeseth, Thomas (4)
Ching, Christopher R ... (3)
Thompson, Paul M (3)
Andersson, Micael (3)
de Geus, Eco J. C. (3)
Boomsma, Dorret I. (3)
Haavik, Jan (3)
Moberget, Torgeir (3)
Thalamuthu, Anbupala ... (3)
Cichon, Sven (3)
Hashimoto, Ryota (3)
Jacquemont, Sebastie ... (3)
Ames, David (3)
Crespo-Facorro, Bene ... (3)
Tordesillas-Gutierre ... (3)
Groenewold, Nynke A (3)
Stein, Dan J (3)
Sachdev, Perminder S ... (3)
Medland, Sarah E (3)
Grabe, Hans J. (3)
Wittfeld, Katharina (3)
Teumer, Alexander (3)
Desrivieres, Sylvane (3)
Ophoff, Roel A (3)
Owen, Michael J. (3)
Armstrong, Nicola J. (3)
Brodaty, Henry (3)
Caspers, Svenja (3)
de Zubicaray, Greig ... (3)
Doherty, Joanne L. (3)
Donohoe, Gary (3)
Ehrlich, Stefan (3)
Eising, Else (3)
Fisher, Simon E. (3)
Frouin, Vincent (3)
Fukunaga, Masaki (3)
Glahn, David C. (3)
Hehir-Kwa, Jayne Y. (3)
Jockwitz, Christiane (3)
Kikuchi, Masataka (3)
visa färre...
Lärosäte
Karolinska Institutet (5)
Umeå universitet (4)
Göteborgs universitet (1)
Linköpings universitet (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy