SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sütt Silva) "

Sökning: WFRF:(Sütt Silva)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amrutkar, Manoj, et al. (författare)
  • STK25 is a critical determinant in nonalcoholic steatohepatitis.
  • 2016
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - 1530-6860. ; 30:10, s. 3628-3643
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and 10-20% of patients with NAFLD progress to nonalcoholic steatohepatitis (NASH) with a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Despite its high medical importance, the molecular mechanisms controlling progression from simple liver steatosis to NASH remain elusive. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid deposition, systemic glucose, and insulin homeostasis. To elucidate the role of STK25 in the development of NASH, we challenged Stk25-knockout and transgenic mice with a methionine and choline-deficient (MCD) diet. We show that Stk25(-/-) mice are protected against MCD-diet-induced NASH, as evidenced by repressed liver steatosis, oxidative damage, inflammation, and fibrosis, whereas Stk25 transgenic mice developed a more severe NASH phenotype, compared with corresponding wild-type littermates. Consistently, NASH features were suppressed in STK25-deficient human hepatocytes cultured in MCD medium, and reciprocally enhanced in STK25-overexpressing cells. We also found a significant positive correlation in human liver biopsies between STK25 expression and NASH development. The study provides evidence for multiple roles of STK25 in NASH pathogenesis and future investigations to address the potential therapeutic relevance of pharmacological STK25 inhibitors in prevention and treatment of NASH are warranted.-Amrutkar, M., Chursa, U., Kern, M., Nuñez-Durán, E., Ståhlman, M., Sütt, S., Borén, J., Johansson, B. R., Marschall, H.-U., Blüher, M., Mahlapuu, M. STK25 is a critical determinant in nonalcoholic steatohepatitis.
  •  
2.
  • Chursa, Urszula, et al. (författare)
  • Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle.
  • 2017
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 60:3, s. 553-567
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the molecular networks controlling ectopic lipid deposition and insulin responsiveness in skeletal muscle is essential for developing new strategies to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator of liver steatosis, hepatic lipid metabolism and whole body glucose and insulin homeostasis. Here, we assessed the role of STK25 in control of ectopic fat storage and insulin responsiveness in skeletal muscle.Skeletal muscle morphology was studied by histological examination, exercise performance and insulin sensitivity were assessed by treadmill running and euglycaemic-hyperinsulinaemic clamp, respectively, and muscle lipid metabolism was analysed by ex vivo assays in Stk25 transgenic and wild-type mice fed a high-fat diet. Lipid accumulation and mitochondrial function were also studied in rodent myoblasts overexpressing STK25. Global quantitative phosphoproteomics was performed in skeletal muscle of Stk25 transgenic and wild-type mice fed a high-fat diet to identify potential downstream mediators of STK25 action.We found that overexpression of STK25 in transgenic mice fed a high-fat diet increases intramyocellular lipid accumulation, impairs skeletal muscle mitochondrial function and sarcomeric ultrastructure, and induces perimysial and endomysial fibrosis, thereby reducing endurance exercise capacity and muscle insulin sensitivity. Furthermore, we observed enhanced lipid accumulation and impaired mitochondrial function in rodent myoblasts overexpressing STK25, demonstrating an autonomous action for STK25 within cells. Global phosphoproteomic analysis revealed alterations in the total abundance and phosphorylation status of different target proteins located predominantly to mitochondria and sarcomeric contractile elements in Stk25 transgenic vs wild-type muscle, respectively, providing a possible molecular mechanism for the observed phenotype.STK25 emerges as a new regulator of the complex interplay between lipid storage, mitochondrial energetics and insulin action in skeletal muscle, highlighting the potential of STK25 antagonists for type 2 diabetes treatment.
  •  
3.
  • Nuñez Durán, Esther, et al. (författare)
  • Protein kinase STK25 aggravates the severity of non-alcoholic fatty pancreas disease in mice
  • 2017
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 234:1, s. 15-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterising the molecular networks that negatively regulate pancreatic beta-cell function is essential for understanding the underlying pathogenesis and developing new treatment strategies for type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator of ectopic fat storage, meta-inflammation, and fibrosis in liver and skeletal muscle. Here, we assessed the role of STK25 in control of progression of non-alcoholic fatty pancreas disease in the context of chronic exposure to dietary lipids in mice. We found that overexpression of STK25 in high-fat-fed transgenic mice aggravated diet-induced lipid storage in the pancreas compared with that of wild-type controls, which was accompanied by exacerbated pancreatic inflammatory cell infiltration, stellate cell activation, fibrosis and apoptosis. Pancreas of Stk25 transgenic mice also displayed a marked decrease in islet beta/alpha-cell ratio and alteration in the islet architecture with an increased presence of a-cells within the islet core, whereas islet size remained similar between genotypes. After a continued challenge with a high-fat diet, lower levels of fasting plasma insulin and C-peptide, and higher levels of plasma leptin, were detected in Stk25 transgenic vs wild-type mice. Furthermore, the glucose-stimulated insulin secretion was impaired in high-fat-fed Stk25 transgenic mice during glucose tolerance test, in spite of higher net change in blood glucose concentrations compared with wild-type controls, suggesting islet beta-cell dysfunction. In summary, this study unravels a role for STK25 in determining the susceptibility to diet-induced nonalcoholic fatty pancreas disease in mice in connection to obesity. Our findings highlight STK25 as a potential drug target for metabolic disease.
  •  
4.
  • Nuñez Durán, Esther, et al. (författare)
  • Serine/threonine protein kinase 25 antisense oligonucleotide treatment reverses glucose intolerance, insulin resistance, and nonalcoholic fatty liver disease in mice.
  • 2018
  • Ingår i: Hepatology communications. - : Ovid Technologies (Wolters Kluwer Health). - 2471-254X. ; 2:1, s. 69-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) contributes to the pathogenesis of type 2 diabetes and cardiovascular disease, and patients with nonalcoholic steatohepatitis (NASH) are also at risk of developing cirrhosis, liver failure, and hepatocellular carcinoma. To date, no specific therapy exists for NAFLD/NASH, which has been recognized as one of the major unmet medical needs of the twenty-first century. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of energy homeostasis and NAFLD progression. Here, we investigated the effect of antisense oligonucleotides (ASOs) targeting Stk25 on the metabolic and molecular phenotype of mice after chronic exposure to dietary lipids. We found that Stk25 ASOs efficiently reversed high-fat diet-induced systemic hyperglycemia and hyperinsulinemia, improved whole-body glucose tolerance and insulin sensitivity, and ameliorated liver steatosis, inflammatory infiltration, apoptosis, hepatic stellate cell activation, and nutritional fibrosis in obese mice. Moreover, Stk25 ASOs suppressed the abundance of liver acetyl-coenzyme A carboxylase (ACC) protein, a key regulator of both lipid oxidation and synthesis, revealing the likely mechanism underlying repression of hepatic fat accumulation by ASO treatment. We also found that STK25 protein levels correlate significantly and positively with NASH development in human liver biopsies, and several common nonlinked single-nucleotide polymorphisms in the human STK25 gene are associated with altered liver fat, supporting a critical role of STK25 in the pathogenesis of NAFLD in humans. Conclusion: Preclinical validation for the metabolic benefit of pharmacologically inhibiting STK25 in the context of obesity is provided. Therapeutic intervention aimed at reducing STK25 function may provide a new strategy for the treatment of patients with NAFLD, type 2 diabetes, and related complex metabolic diseases. (Hepatology Communications 2018;2:69-83).
  •  
5.
  • Sütt, Silva, et al. (författare)
  • STK25 regulates oxidative capacity and metabolic efficiency in adipose tissue
  • 2018
  • Ingår i: Journal of Endocrinology. - 1479-6805 .- 0022-0795. ; 238:3, s. 187-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-body energy homeostasis at over-nutrition critically depends on how well adipose tissue remodels in response to excess calories. We recently identified serine/ threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in non-adipose tissue and systemic insulin resistance in the context of nutritional stress. Here, we investigated the role of STK25 in regulation of adipose tissue dysfunction in mice challenged with a high-fat diet. We found that overexpression of STK25 in high-fat-fed mice resulted in impaired mitochondrial function and aggravated hypertrophy, inflammatory infiltration and fibrosis in adipose depots. Reciprocally, Stk25-knockout mice displayed improved mitochondrial function and were protected against diet-induced excessive fat storage, meta-inflammation and fibrosis in brown and white adipose tissues. Furthermore, in rodent HIB-1B cell line, STK25 depletion resulted in enhanced mitochondrial activity and consequently, reduced lipid droplet size, demonstrating an autonomous action for STK25 within adipocytes. In summary, we provide the first evidence for a key function of STK25 in controlling the metabolic balance of lipid utilization vs lipid storage in brown and white adipose depots, suggesting that repression of STK25 activity offers a potential strategy for establishing healthier adipose tissue in the context of chronic exposure to dietary lipids.
  •  
6.
  • Xia, Ying, et al. (författare)
  • STE20-type kinase TAOK3 regulates hepatic lipid partitioning
  • 2021
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 54
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid storage in hepatocytes, has recently emerged as a leading global cause of chronic liver disease. The aim of this study was to examine the role of STE20-type protein kinase TAOK3, which has previously been shown to associate with hepatic lipid droplets, in the initiation and aggravation of human NAFLD. Methods: The correlation between TAOK3 mRNA expression and the severity of NAFLD was investigated in liver biopsies from 62 individuals. In immortalized human hepatocytes, intracellular fat deposition, lipid metabolism, and oxidative and endoplasmic reticulum stress were analyzed when TAOK3 was overexpressed or knocked down by small interfering RNA. Subcellular localization of TAOK3 was characterized in human and mouse hepatocytes by immunofluorescence microscopy. Results: We found that the TAOK3 transcript levels in human liver biopsies were positively correlated with the key lesions of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Overexpression of TAOK3 in cultured human hepatocytes exacerbated lipid storage by inhibiting boxidation and triacylglycerol secretion while enhancing lipid synthesis. Conversely, silencing of TAOK3 attenuated lipid deposition in human hepatocytes by stimulating mitochondrial fatty acid oxidation and triacylglycerol efflux while suppressing lipogenesis. We also found aggravated or decreased oxidative/endoplasmic reticulum stress in human hepatocytes with increased or reduced TAOK3 levels, respectively. The subcellular localization of TAOK3 in human and mouse hepatocytes was confined to intracellular lipid droplets. Conclusions: This study provides the first evidence that hepatic lipid droplet-coating kinase TAOK3 is a critical regulatory node controlling liver lipotoxicity and susceptibility to NAFLD. (c) 2021 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy