SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(SINNING I) "

Sökning: WFRF:(SINNING I)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • BJORNESTEDT, R, et al. (författare)
  • FUNCTIONAL-SIGNIFICANCE OF ARGININE-15 IN THE ACTIVE-SITE OF HUMAN CLASS-ALPHA GLUTATHIONE TRANSFERASE A1-1
  • 1995
  • Ingår i: JOURNAL OF MOLECULAR BIOLOGY. - : ACADEMIC PRESS (LONDON) LTD. - 0022-2836. ; 247:4, s. 765-773
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Arg15 is a conserved active-site residue in class Alpha glutathione transferases. X-ray diffraction studies of human glutathione transferase Al-1 have shown that N-epsilon of this amino acid residue is adjacent to the sulfur atom of a glutathione derivati
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Kleywegt, GJ, et al. (författare)
  • The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 angstrom resolution, and a comparison with related enzymes
  • 1997
  • Ingår i: JOURNAL OF MOLECULAR BIOLOGY. - 0022-2836. ; 272:3, s. 383-397
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose is the most abundant polymer in the biosphere. Although generally resistant to degradation, it may be hydrolysed by cellulolytic organisms that have evolved a variety of structurally distinct enzymes, cellobiohydrolases and endoglucanases, for this purpose. Endoglucanase I (EG I) is the major endoglucanase produced by the cellulolytic fungus Trichoderma reesei, accounting for 5 to 10% of the total amount of cellulases produced by this organism. Together with EG I from Humicola insolens and T. reesei cellobiohydrolase I (CBH I), the enzyme is classified into family 7 of the glycosyl hydrolases, and it catalyses hydrolysis with a net retention of the anomeric configuration.The structure of the catalytic core domain (residues 1 to 371) of EG I from T. reesei has been determined at 3.6 A resolution by the molecular replacement method using the structures of T. reesei CBH I and H. insolens EG I as search models. By employing the 2-fold non-crystallographic symmetry (NCS), the structure was refined successfully, despite the limited resolution. The final model has an R-factor of 0.201 (Rfree 0.258).The structure of EG I reveals an extended, open substrate-binding cleft, rather than a tunnel as found in the homologous cellobiohydrolase CBH I. This confirms the earlier proposal that the tunnel-forming loops in CBH I have been deleted in EG I, which has resulted in an open active site in EG I, enabling it to function as an endoglucanase. Comparison of the structure of EG I with several related enzymes reveals structural similarities, and differences that relate to their biological function in degrading particular substrates. A possible structural explanation of the drastically different pH profiles of T. reesei and H. insolens EG I is proposed.
  •  
7.
  • Sinning, I, et al. (författare)
  • Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes.
  • 1993
  • Ingår i: J Mol Biol. - 0022-2836. ; 232:1, s. 192-212
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of human alpha class glutathione transferase A1-1 has been determined and refined to a resolution of 2.6 A. There are two copies of the dimeric enzyme in the asymmetric unit. Each monomer is built from two domains. A bound inhibitor, S-benzyl-glutathione, is primarily associated with one of these domains via a network of hydrogen bonds and salt-links. In particular, the sulphur atom of the inhibitor forms a hydrogen bond to the hydroxyl group of Tyr9 and the guanido group of Arg15. The benzyl group of the inhibitor is completely buried in a hydrophobic pocket. The structure shows an overall similarity to the mu and pi class enzymes particularly in the glutathione-binding domain". The main difference concerns the extended C terminus of the alpha class enzyme which forms an extra alpha-helix that blocks one entrance to the active site and makes up part of the substrate binding site.
  •  
8.
  •  
9.
  • Zewinger, Stephen, et al. (författare)
  • Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease : a molecular and genetic association study
  • 2017
  • Ingår i: The Lancet Diabetes and Endocrinology. - : ELSEVIER SCIENCE INC. - 2213-8587 .- 2213-8595. ; 5:7, s. 534-543
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear.Methods: We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts.Findings: The median follow-up was 9.9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1.44, 95% CI 1.14-1.83) and the presence of either LPA SNP (1.88, 1.40-2.53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0.95, 0.81-1.11 and either LPA SNP 1.10, 0.92-1.31) or cardiovascular mortality (0.99, 0.81-1.2 and 1.13, 0.90-1.40, respectively) or in the validation studies.Interpretation: In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy