SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saathoff H.) "

Sökning: WFRF:(Saathoff H.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Donahue, N. M., et al. (författare)
  • Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:34, s. 13503-13508
  • Tidskriftsartikel (refereegranskat)abstract
    • The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.
  •  
2.
  • Salo, Kent, 1967, et al. (författare)
  • Volatility of secondary organic aerosol during OH radical induced ageing
  • 2011
  • Ingår i: Atmos. Chem. Phys. - : Copernicus GmbH. ; 11, s. 11055-11067
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate oxidation of SOA formed from ozonolysis of α-pinene and limonene by hydroxyl radicals. This paper focuses on changes of particle volatility, using a Volatility Tandem DMA (VTDMA) set-up, in order to explain and elucidate the mechanism behind atmospheric ageing of the organic aerosol. The experiments were conducted at the AIDA chamber facility of Karlsruhe Institute of Technology (KIT) in Karlsruhe and at the SAPHIR chamber of Forchungzentrum Jülich (FZJ) in Jülich. A fresh SOA was produced from ozonolysis of α-pinene or limonene and then aged by enhanced OH exposure. As an OH radical source in the AIDA-chamber the ozonolysis of tetramethylethylene (TME) was used while in the SAPHIR-chamber the OH was produced by natural light photochemistry. A general feature is that SOA produced from ozonolysis of α-pinene and limonene initially was rather volatile and becomes less volatile with time in the ozonolysis part of the experiment. Inducing OH chemistry or adding a new portion of precursors made the SOA more volatile due to addition of new semi-volatile material to the aged aerosol. The effect of OH chemistry was less pronounced in high concentration and low temperature experiments when lower relative amounts of semi-volatile material were available in the gas phase. Conclusions drawn from the changes in volatility were confirmed by comparison with the measured and modelled chemical composition of the aerosol phase. Three quantified products from the α-pinene oxidation; pinonic acid, pinic acid and methylbutanetricarboxylic acid (MBTCA) were used to probe the processes influencing aerosol volatility. A major conclusion from the work is that the OH induced ageing can be attributed to gas phase oxidation of products produced in the primary SOA formation process and that there was no indication on significant bulk or surface reactions. The presented results, thus, strongly emphasise the importance of gas phase oxidation of semi- or intermediate-volatile organic compounds (SVOC and IVOC) for atmospheric aerosol ageing.
  •  
3.
  • Saathoff, H., et al. (författare)
  • Temperature dependence of yields of secondary organic aerosols from the ozonolysis of a-pinene and limonene
  • 2008
  • Ingår i: Atmos. Chem. Phys. Discuss.. ; 8, s. 15595-15664
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Secondary organic aerosol (SOA) formation has been investigated as a function of temperature and humidity for the ozone-initiated reaction of the two monoterpenes a-pinene (243–313 K) and limonene (253–313 K) using the 84.5 m3 aerosol chamber AIDA. This paper gives an overview of the measurements done and presents parameters specifically useful for aerosol yield calculations. The ozonolysis reaction, selected oxidation products and subsequent aerosol formation were followed using several analytical techniques for both gas and condensed phase characterisation. The effective densities of the SOA were determined by comparing mass and volume size distributions to (1.25±0.10) g cm-3 for a-pinene and (1.3±0.2) g cm-3 for limonene. The detailed aerosol dynamics code COSIMA-SOA proved to be essential for a comprehensive evaluation of the experimental results and for providing parameterisations directly applicable within atmospheric models. The COSIMA-assisted analysis succeeded to reproduce the observed time evolutions of SOA total mass, number and size distributions by adjusting the following properties of two oxidation product proxies: individual yield parameters (ai), partitioning coefficients (Ki), vapour pressures (pi) and effective accommodation coefficients (?i). For these properties temperature dependences were derived and parameterised. Vapour pressures and partitioning coefficients followed classical Clausius-Clapeyron temperature dependences. From this relationship enthalpies of vaporisation were derived for the two more and less volatile product proxies of a-pinene: (59±8) kJ mol-1 and (24±9) kJ mol-1, and limonene: (55±14) kJ mol-1 and (25±12) kJ mol-1. The more volatile proxy components had a notably low enthalpy of vaporisation while the less volatile proxy components gave enthalpies of vaporisation comparable with those of typical products from a-pinene oxidation, e.g. pinonaldehyde and pinonic acid.
  •  
4.
  • Saathoff, H., et al. (författare)
  • Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene
  • 2009
  • Ingår i: Atmos. Chem. Phys.. ; 9, s. 1551-1577
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) formation has been investigated as a function of temperature and humidity for the ozone-initiated reaction of the two monoterpenes α-pinene (243–313 K) and limonene (253–313 K) using the 84.5 m3 aerosol chamber AIDA. This paper gives an overview of the measurements done and presents parameters specifically useful for aerosol yield calculations. The ozonolysis reaction, selected oxidation products and subsequent aerosol formation were followed using several analytical techniques for both gas and condensed phase characterisation. The effective densities of the SOA were determined by comparing mass and volume size distributions to (1.25±0.10) g cm−3 for α-pinene and (1.3±0.2) g cm−3 for limonene. The detailed aerosol dynamics code COSIMA-SOA proved to be essential for a comprehensive evaluation of the experimental results and for providing parameterisations directly applicable within atmospheric models. The COSIMA-assisted analysis succeeded to reproduce the observed time evolutions of SOA total mass, number and size distributions by adjusting the following properties of two oxidation product proxies: individual yield parameters (αi), partitioning coefficients (Ki), vapour pressures (pi) and effective accommodation coefficients (γi). For these properties temperature dependences were derived and parameterised. Vapour pressures and partitioning coefficients followed classical Clausius – Clapeyron temperature dependences. From this relationship enthalpies of vaporisation were derived for the two more and less volatile product proxies of α-pinene: (59±8) kJ mol−1 and (24±9) kJ mol−1, and limonene: (55±14) kJ mol−1 and (25±12) kJ mol−1. The more volatile proxy components had a notably low enthalpy of vaporisation while the less volatile proxy components gave enthalpies of vaporisation comparable with those of typical products from α-pinene oxidation, e.g. pinonaldehyde and pinonic acid.
  •  
5.
  • Bianchi, F., et al. (författare)
  • The SALTENA Experiment : Comprehensive Observations of Aerosol Sources, Formation, and Processes in the South American Andes
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:2, s. E212-E229
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an introduction to the Southern Hemisphere High Altitude Experiment on Particle Nucleation and Growth (SALTENA). This field campaign took place between December 2017 and June 2018 (wet to dry season) at Chacaltaya (CHC), a GAW (Global Atmosphere Watch) station located at 5,240 m MSL in the Bolivian Andes. Concurrent measurements were conducted at two additional sites in El Alto (4,000 m MSL) and La Paz (3,600 m MSL). The overall goal of the campaign was to identify the sources, understand the formation mechanisms and transport, and characterize the properties of aerosol at these stations. State-of-the-art instruments were brought to the station complementing the ongoing permanent GAW measurements, to allow a comprehensive description of the chemical species of anthropogenic and biogenic origin impacting the station and contributing to new particle formation. In this overview we first provide an assessment of the complex meteorology, airmass origin, and boundary layer-free troposphere interactions during the campaign using a 6-month high-resolution Weather Research and Forecasting (WRF) simulation coupled with Flexible Particle dispersion model (FLEXPART). We then show some of the research highlights from the campaign, including (i) chemical transformation processes of anthropogenic pollution while the air masses are transported to the CHC station from the metropolitan area of La Paz-El Alto, (ii) volcanic emissions as an important source of atmospheric sulfur compounds in the region, (iii) the characterization of the compounds involved in new particle formation, and (iv) the identification of long-range-transported compounds from the Pacific or the Amazon basin. We conclude the article with a presentation of future research foci. The SALTENA dataset highlights the importance of comprehensive observations in strategic high-altitude locations, especially the undersampled Southern Hemisphere.
  •  
6.
  • Huang, Wei, et al. (författare)
  • Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and mountain environments
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24:4, s. 2607-2624
  • Tidskriftsartikel (refereegranskat)abstract
    • The apparent volatility of atmospheric organic aerosol (OA) particles is determined by their chemical composition and environmental conditions (e.g., ambient temperature). A quantitative, experimental assessment of volatility and the respective importance of these two factors remains challenging, especially in ambient measurements. We present molecular composition and volatility of oxygenated OA (OOA) particles in different rural, urban, and mountain environments (including Chacaltaya, Bolivia; Alabama, US; Hyytiälä, Finland; Stuttgart and Karlsruhe, Germany; and Delhi, India) based on deployments of a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-CIMS). We find on average larger carbon numbers (nC) and lower oxygen-To-carbon (O:C) ratios at the urban sites (nC: 9.8±0.7; O:C: 0.76±0.03; average ±1 standard deviation) compared to the rural (nC: 8.8±0.6; O:C: 0.80±0.05) and mountain stations (nC: 8.1±0.8; O:C: 0.91±0.07), indicative of different emission sources and chemistry. Compounds containing only carbon, hydrogen, and oxygen atoms (CHO) contribute the most to the total OOA mass at the rural sites (79.9±5.2%), in accordance with their proximity to forested areas (66.2±5.5% at the mountain sites and 72.6±4.3% at the urban sites). The largest contribution of nitrogen-containing compounds (CHON) is found at the urban stations (27.1±4.3%), consistent with their higher NOx levels. Moreover, we parametrize OOA volatility (saturation mass concentrations, Csat) using molecular composition information and compare it with the bulk apparent volatility derived from thermal desorption of the OOA particles within the FIGAERO. We find differences in Csat values of up to 1/43 orders of magnitude and variation in thermal desorption profiles (thermograms) across different locations and systems. From our study, we draw the general conclusion that environmental conditions (e.g., ambient temperature) do not directly affect OOA apparent volatility but rather indirectly by influencing the sources and chemistry of the environment and thus the chemical composition. The comprehensive dataset provides results that show the complex thermodynamics and chemistry of OOA and their changes during its lifetime in the atmosphere. We conclude that generally the chemical description of OOA suffices to predict its apparent volatility, at least qualitatively. Our study thus provides new insights that will help guide choices of, e.g., descriptions of OOA volatility in different model frameworks such as air quality models and cloud parcel models.
  •  
7.
  • Jonsson, Åsa M., 1976, et al. (författare)
  • Volatility of secondary organic aerosols from the ozone initiated oxidation of alpha-pinene and limonene
  • 2007
  • Ingår i: Journal of Aerosol Science. - : Elsevier BV. - 0021-8502. ; 38:8, s. 843-852
  • Tidskriftsartikel (refereegranskat)abstract
    • The volatility of secondary organic aerosol (SOA) from the ozone initiated oxidation of a-pinene and limonene has been investigated in a large aerosol chamber facility, the AIDA chamber of Research Centre Karlsruhe, by using a volatility tandem-DMA system (VTDMA). The volatility of particles has been classified by monitoring the change in particle peak diameter at temperatures between 298 and 583 K. Specifically, the volatility of SOA was determined depending on organic precursor molecule, temperature at which the SOA was formed (243-303 K), relative humidity (0.2-72% RH), size of the particles (20-300 nm), and the presence of an OH-scavenger. Depending on experimental conditions the normalised mode particle diameter e.g. at an evaporative temperature of 423 K ranged from 0.32 to 0.65, i.e. remaining volume fraction 0.04-0.27. The thermal characteristics of SOA are influenced the most by reaction temperature and organic precursor. In this paper the benefits of using a VTDMA for mechanistic studies of SOA formation is demonstrated. (c) 2007 Elsevier Ltd. All rights reserved.
  •  
8.
  • Shen, Xiaoli, et al. (författare)
  • Composition and origin of PM2.5 aerosol particles in the upper Rhine valley in summer
  • 2019
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:20, s. 13189-13208
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted a 6-week measurement campaign in summer 2016 at a rural site about 11 km north of the city of Karlsruhe in southwest Germany in order to study the chemical composition and origin of aerosols in the upper Rhine valley. In particular, we deployed a single-particle mass spectrometer (LAAPTOF) and an aerosol mass spectrometer (AMS) to provide complementary chemical information on aerosol particles smaller than 2.5 mu m. For the entire measurement period, the total aerosol particle mass was dominated by sodium salts, contributing on average (36 +/- 27) % to the total single particles measured by the LAAPTOF. The total particulate organic compounds, sulfate, nitrate, and ammonium contributed on average (58 +/- 12) %, (22 +/- 7) %, (10 +/- 1) %, and (9 +/- 3) % to the total non-refractory particle mass measured by the AMS. Positive matrix factorization (PMF) analysis for the AMS data suggests that the total organic aerosol (OA) consisted of five components, including (9 +/- 7) % hydrocarbon-like OA (HOA), (16 +/- 11) % semi-volatile oxygenated OA (SV-OOA), and (75 +/- 15) % low-volatility oxygenated OA (LV-OOA). The regional transport model COSMO-ART was applied for source apportionment and to achieve a better understanding of the impact of complex transport patterns on the field observations. Combining field observations and model simulations, we attributed high particle numbers and SO2 concentrations observed at this rural site to industrial emissions from power plants and a refinery in Karlsruhe. In addition, two characteristic episodes with aerosol particle mass dominated by sodium salts particles comprising (70 +/- 24) % of the total single particles and organic compounds accounting for (77 +/- 6) % of total non-refractory species, respectively, were investigated in detail. For the first episode, we identified relatively fresh and aged sea salt particles originating from the Atlantic Ocean more than 800 km away. These particles showed markers like m/z 129 C5H7NO3+, indicating the influence of anthropogenic emissions modifying their composition, e.g. from chloride to nitrate salts during the long-range transport. For a 3 d episode including high organic mass concentrations, model simulations show that on average (74 +/- 7) % of the particulate organics at this site were of biogenic origin. Detailed model analysis allowed us to find out that three subsequent peaks of high organic mass concentrations originated from different sources, including local emissions from the city and industrial area of Karlsruhe, regional transport from the city of Stuttgart (similar to 64 km away), and potential local night-time formation and growth. Biogenic (forest) and anthropogenic (urban) emissions were mixed during transport and contributed to the formation of organic particles. In addition, topography, temperature inversion, and stagnant meteorological conditions also played a role in the build-up of higher organic particle mass concentrations. Furthermore, the model was evaluated using field observations and corresponding sensitivity tests. The model results show good agreement with trends and concentrations observed for several trace gases (e.g. O-3, NO2, and SO2) and aerosol particle compounds (e.g. ammonium and nitrate). However, the model underestimates the number of particles by an order of magnitude and underestimates the mass of organic particles by a factor of 2.3. The discrepancy was expected for particle number since the model does not include all nucleation processes. The missing organic mass indicates either an underestimated regional background or missing sources and/or mechanisms in the model, like night-time chemistry. This study demonstrates the potential of combining comprehensive field observations with dedicated transport modelling to understand the chemical composition and complex origin of aerosols.
  •  
9.
  • Tillmann, R., et al. (författare)
  • Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of α-pinene
  • 2010
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:15, s. 7057-7072
  • Tidskriftsartikel (refereegranskat)abstract
    • The ozonolysis of α-pinene has been investigated under dry and humid conditions in the temperature range of 243–303 K. The results provided new insight into the role of water and temperature in the degradation mechanism of α-pinene and in the formation of secondary organic aerosols (SOA). The SOA yields were higher at humid conditions than at dry conditions. The water induced gain was largest for the lowest temperatures investigated (243 and 253 K). The increase in the SOA yields was dominated by water (and temperature) effects on the organic product distribution, whilst physical uptake of water was negligible. This will be demonstrated for the example of pinonaldehyde (PA) which was formed as a major product in the humid experiments with total molar yields of 0.30±0.06 at 303 K and 0.15±0.03 at 243 K. In the dry experiments the molar yields of PA were only 0.07±0.02 at 303 K and 0.02±0.02 at 253 K. The observed partitioning of PA as a function of the SOA mass present at 303 K limited the effective vapour pressure of pure PA pPA0 to the range of 0.01–0.001 Pa, 3–4 orders of magnitude lower than literature values. The corresponding mass partitioning coefficient was determined to KPA=0.005±0.004 m3 μg−1 and the total mass yield αPAtotal=0.37±0.08. At 303 K PA preferably stayed in the gas-phase, whereas at 253 K and 243 K it exclusively partitioned into the particulate phase. PA could thus account at least for half of the water induced gain in SOA mass at 253 K. The corresponding effect was negligible at 303 K because the PA preferably remained in the gas-phase. The yield of OH radicals, which were produced in the ozonolysis, was indirectly determined by means of the yield of cyclohexanone formed in the reaction of OH radicals with cyclohexane. OH yields of the α-pinene ozonolysis were determined to 0.67±0.17 for humid and 0.54±0.13 for dry conditions at 303 K, indicating a water dependent path of OH radical formation. For 253 and 243 K OH yields could be estimated to 0.5 with no significant difference between the dry and humid experiments. This is the first clear indication for OH radical formation by α-pinene ozonolysis at such low temperatures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy