SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sabantsev Anton) "

Sökning: WFRF:(Sabantsev Anton)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bacic, Luka, et al. (författare)
  • Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
  •  
2.
  • Bacic, Luka, et al. (författare)
  • Recent advances in single-molecule fluorescence microscopy render structural biology dynamic
  • 2020
  • Ingår i: Current opinion in structural biology. - LONDON ENGLAND : Elsevier BV. - 0959-440X .- 1879-033X. ; 65, s. 61-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-molecule fluorescence microscopy has long been appreciated as a powerful tool to study the structural dynamics that enable biological function of macromolecules. Recent years have witnessed the development of more complex single-molecule fluorescence techniques as well as powerful combinations with structural approaches to obtain mechanistic insights into the workings of various molecular machines and protein complexes. In this review, we highlight these developments that together bring us one step closer to a dynamic understanding of biological processes in atomic details.
  •  
3.
  • Bacic, Luka, et al. (författare)
  • Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome
  • 2021
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.
  •  
4.
  • Lehmann, Laura C., et al. (författare)
  • Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Patch
  • 2020
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 33:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Upon DNA damage, the ALC1/CHD1L nucleosome remodeling enzyme (remodeler) is activated by binding to poly(ADP-ribose). How activated ALC1 recognizes the nucleosome, as well as how this recognition is coupled to remodeling, is unknown. Here, we show that remodeling by ALC1 requires a wild-type acidic patch on the entry side of the nucleosome. The cryo-electron microscopy structure of a nucleosome-ALC1 linker complex reveals a regulatory linker segment that binds to the acidic patch. Mutations within this interface alter the dynamics of ALC1 recruitment to DNA damage and impede the ATPase and remodeling activities of ALC1. Full activation requires acidic patch-linker segment interactions that tether the remodeler to the nucleosome and couple ATP hydrolysis to nucleosome mobilization. Upon DNA damage, such a requirement may be used to modulate ALC1 activity via changes in the nucleosome acidic patches.
  •  
5.
  • Levendosky, Robert F., et al. (författare)
  • The Chd1 chromatin remodeler shifts hexasomes unidirectionally
  • 2016
  • Ingår i: eLIFE. - 2050-084X. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite their canonical two-fold symmetry, nucleosomes in biological contexts are often asymmetric: functionalized with post-translational modifications (PTMs), substituted with histone variants, and even lacking H2A/H2B dimers. Here we show that the Widom 601 nucleosome positioning sequence can produce hexasomes in a specific orientation on DNA, providing a useful tool for interrogating chromatin enzymes and allowing for the generation of nucleosomes with precisely defined asymmetry. Using this methodology, we demonstrate that the Chd1 chromatin remodeler from Saccharomyces cerevisiae requires H2A/H2B on the entry side for sliding, and thus, unlike the back-and-forth sliding observed for nucleosomes, Chd1 shifts hexasomes unidirectionally. Chd1 takes part in chromatin reorganization surrounding transcribing RNA polymerase II (Pol II), and using asymmetric nucleosomes we show that ubiquitin-conjugated H2B on the entry side stimulates nucleosome sliding by Chd1. We speculate that biased nucleosome and hexasome sliding due to asymmetry contributes to the packing of arrays observed in vivo.
  •  
6.
  • Marklund, Emil, et al. (författare)
  • DNA surface exploration and operator bypassing during target search
  • 2020
  • Ingår i: Nature. - : NATURE RESEARCH. - 0028-0836 .- 1476-4687. ; 583:7818, s. 858-
  • Tidskriftsartikel (refereegranskat)abstract
    • Many proteins that bind specific DNA sequences search the genome by combining three-dimensional diffusion with one-dimensional sliding on nonspecific DNA(1-5). Here we combine resonance energy transfer and fluorescence correlation measurements to characterize how individual lac repressor (LacI) molecules explore the DNA surface during the one-dimensional phase of target search. To track the rotation of sliding LacI molecules on the microsecond timescale, we use real-time single-molecule confocal laser tracking combined with fluorescence correlation spectroscopy (SMCT-FCS). The fluctuations in fluorescence signal are accurately described by rotation-coupled sliding, in which LacI traverses about 40 base pairs (bp) per revolution. This distance substantially exceeds the 10.5-bp helical pitch of DNA; this suggests that the sliding protein frequently hops out of the DNA groove, which would result in the frequent bypassing of target sequences. We directly observe such bypassing using single-molecule fluorescence resonance energy transfer (smFRET). A combined analysis of the smFRET and SMCT-FCS data shows that LacI hops one or two grooves (10-20 bp) every 200-700 mu s. Our data suggest a trade-off between speed and accuracy during sliding: the weak nature of nonspecific protein-DNA interactions underlies operator bypassing, but also speeds up sliding. We anticipate that SMCT-FCS, which monitors rotational diffusion on the microsecond timescale while tracking individual molecules with millisecond resolution, will be applicable to the real-time investigation of many other biological interactions and will effectively extend the accessible time regime for observing these interactions by two orders of magnitude. Single-molecule fluorescence resonance energy transfer and real-time confocal laser tracking with fluorescence correlation spectroscopy together characterize how individual lac repressor molecules bypass operator sites while exploring the DNA surface at microsecond timescales.
  •  
7.
  • Marklund, Emil, et al. (författare)
  • Mechanism of DNA surface exploration and operator bypassing during target search
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Many proteins that bind specific DNA sequences search the genome by combining three dimensional (3D) diffusion in the cytoplasm with one dimensional (1D) sliding on non-specific DNA. Here we combine resonance energy transfer and fluorescence correlation measurements to characterize how individual lac repressor (LacI) molecules explore DNA during the 1D phase of target search. To track the rotation of sliding LacI molecules on the microsecond time scale during DNA surface search, we use real-time single-molecule confocal laser tracking combined with fluorescence correlation spectroscopy (SMCT-FCS). The fluorescence signal fluctuations are accurately described by rotation-coupled sliding, where LacI traverses ~40 base pairs (bp) per revolution. This distance substantially exceeds the 10.5-bp helical pitch of DNA, suggesting that the sliding protein frequently hops out of the DNA groove, which would result in frequent bypassing of target sequences. Indeed, we directly observe such bypassing by single-molecule fluorescence resonance energy transfer (smFRET). A combined analysis of the smFRET and SMCT-FCS data shows that LacI at most hops one to two grooves (10-20 bp) every 250 μs. Overall, our data suggest a speed-accuracy trade-off during sliding; the weak nature of non-specific protein-DNA interactions underlies operator bypassing but also facilitates rapid sliding. We anticipate that our SMCT-FCS method to monitor rotational diffusion on the microsecond time scale while tracking individual molecules with millisecond time resolution will be applicable to the real-time investigation of many other biological interactions and effectively extends the accessible time regime by two orders of magnitude.
  •  
8.
  • Sabantsev, Anton, et al. (författare)
  • Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • ATP-dependent chromatin remodelling enzymes (remodellers) regulate DNA accessibility in eukaryotic genomes. Many remodellers reposition (slide) nucleosomes, however, how DNA is propagated around the histone octamer during this process is unclear. Here we examine the real-time coordination of remodeller-induced DNA movements on both sides of the nucleosome using three-colour single-molecule FRET. During sliding by Chd1 and SNF2h remodellers, DNA is shifted discontinuously, with movement of entry-side DNA preceding that of exit-side DNA. The temporal delay between these movements implies a single ratelimiting step dependent on ATP binding and transient absorption or buffering of at least one base pair. High-resolution cross-linking experiments show that sliding can be achieved by buffering as few as 3 bp between entry and exit sides of the nucleosome. We propose that DNA buffering ensures nucleosome stability during ATP-dependent remodelling, and provides a means for communication between remodellers acting on opposite sides of the nucleosome.
  •  
9.
  • Sabantsev, Anton, et al. (författare)
  • Spatiotemporally controlled generation of NTPs for single-molecule studies
  • 2022
  • Ingår i: Nature Chemical Biology. - : Springer Nature. - 1552-4450 .- 1552-4469. ; 18:10, s. 1144-
  • Tidskriftsartikel (refereegranskat)abstract
    • Many essential processes in the cell depend on proteins that use nucleoside triphosphates (NTPs). Methods that directly monitor the often-complex dynamics of these proteins at the single-molecule level have helped to uncover their mechanisms of action. However, the measurement throughput is typically limited for NTP-utilizing reactions, and the quantitative dissection of complex dynamics over multiple sequential turnovers remains challenging. Here we present a method for controlling NTP-driven reactions in single-molecule experiments via the local generation of NTPs (LAGOON) that markedly increases the measurement throughput and enables single-turnover observations. We demonstrate the effectiveness of LAGOON in single-molecule fluorescence and force spectroscopy assays by monitoring DNA unwinding, nucleosome sliding and RNA polymerase elongation. LAGOON can be readily integrated with many single-molecule techniques, and we anticipate that it will facilitate studies of a wide range of crucial NTP-driven processes.
  •  
10.
  • Sabantsev, Anton, et al. (författare)
  • The voyage is as important as the harbor
  • 2024
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 13
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • To find nucleosomes, chromatin remodelers slide and hop along DNA, and their direction of approach affects the direction that nucleosomes slide in.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy