SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sablin M.) "

Sökning: WFRF:(Sablin M.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Librado, P., et al. (författare)
  • The origins and spread of domestic horses from the Western Eurasian steppes
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 598, s. 634-640
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of 273 ancient horse genomes reveals that modern domestic horses originated in the Western Eurasian steppes, especially the lower Volga-Don region. Domestication of horses fundamentally transformed long-range mobility and warfare(1). However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling(2-4) at Botai, Central Asia around 3500 bc(3). Other longstanding candidate regions for horse domestication, such as Iberia(5) and Anatolia(6), have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association(7) between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc(8,9) driving the spread of Indo-European languages(10). This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture(11,12).
  •  
2.
  • Allentoft, M. E., et al. (författare)
  • Population genomics of Bronze Age Eurasia
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 522:7555
  • Tidskriftsartikel (refereegranskat)abstract
    • The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.
  •  
3.
  • Muhlemann, B., et al. (författare)
  • Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:29, s. 7557-7562
  • Tidskriftsartikel (refereegranskat)abstract
    • Human parvovirus B19 (B19V) is a ubiquitous human pathogen associated with a number of conditions, such as fifth disease in children and arthritis and arthralgias in adults. B19V is thought to evolve exceptionally rapidly among DNA viruses, with substitution rates previously estimated to be closer to those typical of RNA viruses. On the basis of genetic sequences up to similar to 70 years of age, the most recent common ancestor of all B19V has been dated to the early 1800s, and it has been suggested that genotype 1, the most common B19V genotype, only started circulating in the 1960s. Here we present 10 genomes (63.9-99.7% genome coverage) of B19V from dental and skeletal remains of individuals who lived in Eurasia and Greenland from similar to 0.5 to similar to 6.9 thousand years ago (kya). In a phylogenetic analysis, five of the ancient B19V sequences fall within or basal to the modern genotype 1, and five fall basal to genotype 2, showing a long-term association of B19V with humans. The most recent common ancestor of all B19V is placed similar to 12.6 kya, and we find a substitution rate that is an order of magnitude lower than inferred previously. Further, we are able to date the recombination event between genotypes 1 and 3 that formed genotype 2 to similar to 5.0-6.8 kya. This study emphasizes the importance of ancient viral sequences for our understanding of virus evolution and phylogenetics.
  •  
4.
  •  
5.
  • Ameen, Carly, et al. (författare)
  • Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic
  • 2019
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 286:1916
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestic dogs have been central to life in the North American Arctic for millennia. The ancestors of the Inuit were the first to introduce the widespread usage of dog sledge transportation technology to the Americas, but whether the Inuit adopted local Palaeo-Inuit dogs or introduced a new dog population to the region remains unknown. To test these hypotheses, we generated mitochondrial DNA and geometric morphometric data of skull and dental elements from a total of 922 North American Arctic dogs and wolves spanning over 4500 years. Our analyses revealed that dogs from Inuit sites dating from 2000 BP possess morphological and genetic signatures that distinguish them from earlier Palaeo-Inuit dogs, and identified a novel mitochondrial clade in eastern Siberia and Alaska. The genetic legacy of these Inuit dogs survives today in modern Arctic sledge dogs despite phenotypic differences between archaeological and modern Arctic dogs. Together, our data reveal that Inuit dogs derive from a secondary pre-contact migration of dogs distinct from Palaeo-Inuit dogs, and probably aided the Inuit expansion across the North American Arctic beginning around 1000 BP.
  •  
6.
  • Bergström, Anders, et al. (författare)
  • Grey wolf genomic history reveals a dual ancestry of dogs
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 607:7918, s. 313-320
  • Tidskriftsartikel (refereegranskat)abstract
    • The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.
  •  
7.
  • Lorenzen, Eline D., et al. (författare)
  • Species-specific responses of Late Quaternary megafauna to climate and humans
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 479:7373, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
  •  
8.
  • Plassais, Jocelyn, et al. (författare)
  • Natural and human-driven selection of a single non-coding body size variant in ancient and modern canids
  • 2022
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 32:4, s. 889-897
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestic dogs (Canis lupus familiaris) are the most variable-sized mammalian species on Earth, displaying a 40-fold size difference between breeds.1 Although dogs of variable size are found in the archeological record,2, 3, 4 the most dramatic shifts in body size are the result of selection over the last two centuries, as dog breeders selected and propagated phenotypic extremes within closed breeding populations.5 Analyses of over 200 domestic breeds have identified approximately 20 body size genes regulating insulin processing, fatty acid metabolism, TGFβ signaling, and skeletal formation.6, 7, 8, 9, 10 Of these, insulin-like growth factor 1 (IGF1) predominates, controlling approximately 15% of body size variation between breeds.8 The identification of a functional mutation associated with IGF1 has thus far proven elusive.6,10,11 Here, to identify and elucidate the role of an ancestral IGF1 allele in the propagation of modern canids, we analyzed 1,431 genome sequences from 13 species, including both ancient and modern canids, thus allowing us to define the evolutionary history of both ancestral and derived alleles at this locus. We identified a single variant in an antisense long non-coding RNA (IGF1-AS) that interacts with the IGF1 gene, creating a duplex. While the derived mutation predominates in both modern gray wolves and large domestic breeds, the ancestral allele, which predisposes to small size, was common in small-sized breeds and smaller wild canids. Our analyses demonstrate that this major regulator of canid body size nearly vanished in Pleistocene wolves, before its recent resurgence resulting from human-imposed selection for small-sized breed dogs.
  •  
9.
  • Palkopoulou, Eleftheria, et al. (författare)
  • Holarctic genetic structure and range dynamics in the woolly mammoth
  • 2013
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 280:1770, s. 20131910-
  • Tidskriftsartikel (refereegranskat)abstract
    • Ancient DNA analyses have provided enhanced resolution of population histories in many Pleistocene taxa. However, most studies are spatially restricted, making inference of species-level biogeographic histories difficult. Here, we analyse mitochondrial DNA (mtDNA) variation in the woolly mammoth from across its Holarctic range to reconstruct its history over the last 200 thousand years (kyr). We identify a previously undocumented major mtDNA lineage in Europe, which was replaced by another major mtDNA lineage 32-34 kyr before present (BP). Coalescent simulations provide support for demographic expansions at approximately 121 kyr BP, suggesting that the previous interglacial was an important driver for demography and intraspecific genetic divergence. Furthermore, our results suggest an expansion into Eurasia from America around 66 kyr BP, coinciding with the first exposure of the Bering Land Bridge during the Late Pleistocene. Bayesian inference indicates Late Pleistocene demographic stability until 20-15 kyr BP, when a severe population size decline occurred.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy