SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sabri Nafiseh) "

Sökning: WFRF:(Sabri Nafiseh)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Busayavalasa, Kiran, et al. (författare)
  • The Nup155-mediated organisation of inner nuclear membrane proteins is independent of Nup155 anchoring to the metazoan nuclear pore complex
  • 2012
  • Ingår i: Journal of Cell Science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 125:18, s. 4214-4218
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear envelope (NE), an important barrier between the nucleus and the cytoplasm, is composed of three structures: the outer nuclear membrane, which is continuous with the ER, the inner nuclear membrane (INM), which interfaces with chromatin, and nuclear pore complexes (NPCs), which are essential for the exchange of macromolecules between the two compartments. The NPC protein Nup155 has an evolutionarily conserved role in the metazoan NE formation; but the in vivo analysis of Nup155 has been severely hampered by the essential function of this protein in cell viability. Here, we take advantage of the hypomorphicity of RNAi systems and use a combination of protein binding and rescue assays to map the interaction sites of two neighbouring NPC proteins Nup93 and Nup53 on Nup155, and to define the requirements of these interactions in INM protein organization. We show that different parts of Drosophila Nup155 have distinct functions: the Nup155 beta-propeller anchors the protein to the NPC, whereas the alpha-solenoid part of Nup155 is essential for the correct localisation of INM proteins lamin-B receptor (LBR) and otefin. Using chromatin extracts from semisynchronized cells, we also provide evidence that the Nup155 alpha-solenoid has a chromatin-binding activity that is stronger at the end of mitosis. Our results argue that the role of Nup155 in INM protein localisation is not mediated through the NPC anchoring activity of the protein and suggest that regions other than Nup155 beta-propeller are necessary for the targeting of proteins to the INM.
  •  
2.
  •  
3.
  •  
4.
  • Sabri, Nafiseh, et al. (författare)
  • Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport.
  • 2007
  • Ingår i: The Journal of cell biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 178:4, s. 557-65
  • Tidskriftsartikel (refereegranskat)abstract
    • The phenylanine-glycine (FG)-rich regions of several nucleoporins both bind to nuclear transport receptors and collectively provide a diffusion barrier to the nuclear pores. However, the in vivo roles of FG nucleoporins in transport remain unclear. We have inactivated 30 putative nucleoporins in cultured Drosophila melanogaster S2 cells by RNA interference and analyzed the phenotypes on importin alpha/beta-mediated import and CRM1-dependent protein export. The fly homologues of FG nucleoporins Nup358, Nup153, and Nup54 are selectively required for import. The FG repeats of Nup153 are necessary for its function in transport, whereas the remainder of the protein maintains pore integrity. Inactivation of the CRM1 cofactor RanBP3 decreased the nuclear accumulation of CRM1 and protein export. We report a surprisingly antagonistic relationship between RanBP3 and the Nup214 FG region in determining CRM1 localization and its function in protein export. Our data suggest that peripheral metazoan FG nucleoporins have distinct functions in nuclear protein transport events.
  •  
5.
  • Sabri, Nafiseh, et al. (författare)
  • Evidence for a posttranscriptional role of a TFIIICalpha-like protein in Chironomus tentans
  • 2002
  • Ingår i: Molecular Biology of the Cell. - : American Society for Cell Biology (ASCB). - 1059-1524 .- 1939-4586. ; 13:5, s. 1765-1777
  • Tidskriftsartikel (refereegranskat)abstract
    • We have cloned and sequenced a cDNA that encodes for a nuclear protein of 238 kDa in the dipteran Chironomus tentans. This protein, that we call p2D10, is structurally similar to the alpha subunit of the general transcription factor TFIIIC. Using immunoelectron microscopy we have shown that a fraction of p2D10 is located at sites of transcription, which is consistent with a possible role of this protein in transcription initiation. We have also found that a large fraction of p2D10 is located in the nucleoplasm and in the nuclear pore complexes. Using gel filtration chromatography and coimmunoprecipitation methods, we have identified and characterized two p2D10-containing complexes that differ in molecular mass and composition. The heavy p2D10-containing complex contains at least one other component of the TFIIIC complex, TFIIIC-epsilon. Based on its molecular mass and composition, the heavy p2D10-containing complex may be the Pol III holoenzyme. The light p2D10-containing complex contains RNA together with at least two proteins that are thought to be involved in mRNA trafficking, RAE1 and hrp65. The observations reported here suggest that this new TFIIIC-alpha-like protein is involved in posttranscriptional steps of premRNA metabolism in Chironomus tentans.
  •  
6.
  •  
7.
  • Sjölinder, Mikael, et al. (författare)
  • The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes.
  • 2005
  • Ingår i: Genes & development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 19:16, s. 1871-84
  • Tidskriftsartikel (refereegranskat)abstract
    • In the dipteran Chironomus tentans, actin binds to hrp65, a nuclear protein associated with mRNP complexes. Disruption of the actin-hrp65 interaction in vivo by the competing peptide 65-2CTS reduces transcription drastically, which suggests that the actin-hrp65 interaction is required for transcription. We show that the inhibitory effect of the 65-2CTS peptide on transcription is counteracted by trichostatin A, a drug that inhibits histone deacetylation. We also show that actin and hrp65 are associated in vivo with p2D10, an evolutionarily conserved protein with histone acetyltransferase activity that acts on histone H3. p2D10 is recruited to class II genes in a transcription-dependent manner. We show, using the Balbiani ring genes of C. tentans as a model system, that p2D10 is cotranscriptionally associated with the growing pre-mRNA. We also show that experimental disruption of the actin-hrp65 interaction by the 65-2CTS peptide in vivo results in the release of p2D10 from the transcribed genes, reduced histone H3 acetylation, and a lower level of transcription activity. Furthermore, antibodies against p2D10 inhibit run-on elongation. Our results suggest that actin, hrp65, and p2D10 are parts of a positive feedback mechanism that contributes to maintaining the active transcription state of a gene by recruiting HATs at the RNA level.
  •  
8.
  • Wang, Shenqiu, et al. (författare)
  • The tyrosine kinase Stitcher activates Grainy head and epidermal wound healing in Drosophila.
  • 2009
  • Ingår i: Nature cell biology. - : Springer Science and Business Media LLC. - 1476-4679 .- 1465-7392. ; 11:7, s. 890-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidermal injury initiates a cascade of inflammation, epithelial remodelling and integument repair at wound sites. The regeneration of the extracellular barrier and damaged tissue repair rely on the precise orchestration of epithelial responses triggered by the injury. Grainy head (Grh) transcription factors induce gene expression to crosslink the extracellular barrier in wounded flies and mice. However, the activation mechanisms and functions of Grh factors in re-epithelialization remain unknown. Here we identify stitcher (stit), a new Grh target in Drosophila melanogaster. stit encodes a Ret-family receptor tyrosine kinase required for efficient epidermal wound healing. Live imaging analysis reveals that Stit promotes actin cable assembly during wound re-epithelialization. Stit activation also induces extracellular signal-regulated kinase (ERK) phosphorylation along with the Grh-dependent expression of stit and barrier repair genes at the wound sites. The transcriptional stimulation of stit on injury triggers a positive feedback loop increasing the magnitude of epithelial responses. Thus, Stit activation upon wounding coordinates cytoskeletal rearrangements and the level of Grh-mediated transcriptional wound responses.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy