SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sadeghi Soheil) "

Search: WFRF:(Sadeghi Soheil)

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Castro, Marley, et al. (author)
  • Multi-Cubesat Mission For Auroral Acceleration Region Studies
  • 2021
  • In: IAC 2021 Congress Proceedings, 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates. - : International Astronautical Federation (IAF).
  • Conference paper (peer-reviewed)abstract
    • The Auroral Acceleration Region (AAR) is a key region in understanding the Magnetosphere-Ionosphere interaction. To understand the physical, spatial and temporal features of the region, multi-point measurements are required. Distributed small-satellite missions such as constellations of multiple nano satellites (for example multi-unit CubeSats) would enable such type of measurements. The capabilities of such a mission will highly depend on the number of satellites - one reason that makes low-cost platforms like CubeSats a very promising choice. In a previous study, the state-of-the-art of miniaturized payloads for AAR measurements was analyzed and evaluated and capabilities of different multi-CubeSat configurations equipped with such payloads in addressing different open questions in AAR were discussed. In this paper the mission analysis and possible mission design, as well as necessary technology developments of such multi-CubeSat mission are identified and presented.
  •  
3.
  • Forsyth, C., et al. (author)
  • Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements
  • 2012
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:12, s. A12203-
  • Journal article (peer-reviewed)abstract
    • Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modeling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations.
  •  
4.
  • Li, Bin, et al. (author)
  • Inverted-V and low-energy broadband electron acceleration features of multiple auroras within a large-scale surge
  • 2013
  • In: Journal of Geophysical Research: Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:9, s. 5543-5552
  • Journal article (peer-reviewed)abstract
    • Results are presented from a Cluster C2 satellite crossing through the acceleration region of multiple auroral structures within a large-scale surge, simultaneously monitored by DMSP F17 imager data. The magnetic and electric field data are consistent with the auroral distribution at large and medium scales. We identify the quasi-static acceleration above and below C2 orbit by downgoing inverted-V electrons and parallel electric potential drops, respectively. In the poleward surge region, within or adjacent to the inverted-V arcs, intense low-energy (broadband) electron fluxes are seen as well as a rough equality between E/B and the Alfven velocity, suggesting that these are of Alfvenic origin. The most poleward and equatorward auroral structure is found to be Alfvenic and quasi-static, respectively. In between, the structures are of mixed origin. We estimate the relative role of the acceleration processes by the contributions to the downward electron energy flux by electrons above and below 1.62keV. Although these are local estimates, they should be representative also below Cluster altitude, except for two regions of intense downward Poynting flux, the power of which will be dissipated at lower altitudes and increasing the Alfvenic contribution. This is also supported by intense fluxes of low-energy, broadband, upgoing electrons observed within these regions. Otherwise, the inverted-V contribution dominates for most of the auroral structures observed by Cluster. The Alfvenic contribution to the mixed arc emissions is to extend these to higher altitudes, as shown by numerical simulation results.
  •  
5.
  • Lozano, Rafael, et al. (author)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Journal article (peer-reviewed)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
6.
  • Marklund, Göran T., et al. (author)
  • Altitude Distribution of the Auroral Acceleration Potential Determined from Cluster Satellite Data at Different Heights
  • 2011
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 106:5, s. 055002-
  • Journal article (peer-reviewed)abstract
    • Aurora, commonly seen in the polar sky, is a ubiquitous phenomenon occurring on Earth and other solar system planets. The colorful emissions are caused by electron beams hitting the upper atmosphere, after being accelerated by quasistatic electric fields at 1-2 RE altitudes, or by wave electric fields. Although aurora was studied by many past satellite missions, Cluster is the first to explore the auroral acceleration region with multiprobes. Here, Cluster data are used to determine the acceleration potential above the aurora and to address its stability in space and time. The derived potential comprises two upper, broad U-shaped potentials and a narrower S-shaped potential below, and is stable on a 5 min time scale. The scale size of the electric field relative to that of the current is shown to depend strongly on altitude within the acceleration region. To reveal these features was possible only by combining data from the two satellites.
  •  
7.
  • Marklund, Göran T., et al. (author)
  • Cluster multipoint study of the acceleration potential pattern and electrodynamics of an auroral surge and its associated horn arc
  • 2012
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:10, s. A10223-
  • Journal article (peer-reviewed)abstract
    • Cluster results are presented from the acceleration region of an auroral surge and connected horn arc, observed during an extended time period of substorm activity. The Cluster spacecraft crossed different magnetic local time (MLT) sectors of the surge and horn, with lag times of 2-10 min. Acceleration potential patterns are derived for the horn arc and for the double arc (surge and horn) at the surge front and deeper into the surge. The parallel potential drop of the horn arc ranged between 4 and 7 kV. At the surge front, two weakly coupled U-potentials with parallel potential drops of 8 (7) kV and 7 (5) kV were derived for the surge and horn, respectively, from the C3 (C4) data. A similar, more coupled pattern was derived for the region deeper into the surge. We also address how the field-aligned currents of the surge and horn system close in the ionosphere. The Cluster data allow almost simultaneous estimates of the latitudinal current closure at various MLT sectors. Significant net upward currents are derived for the horn and surge, whereas the currents at the surge front were found to be balanced. The net upward horn current is proposed to be fed by the zonal divergence of the westward Pedersen current in the horn, consistent with the acceleration potential decrease in the westward horn direction. The net upward surge current is proposed to be fed by the divergence of a westward electrojet and by localized downward currents adjacent to the surge.
  •  
8.
  • Marklund, Göran T., et al. (author)
  • Evolution in space and time of the quasi-static acceleration potential of inverted-V aurora and its interaction with Alfvenic boundary processes
  • 2011
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A00K13-
  • Journal article (peer-reviewed)abstract
    • Results are presented from Cluster crossings of the acceleration region of two inverted-V auroras located in the poleward part of an extensive substorm bulge. The particle and field data are used to infer the acceleration potentials of the arcs and their distribution in altitude and latitude. The C1 data are consistent with a symmetric potential pattern, composed of two negative U potentials and one positive U potential in between, and the C3 and C4 data are consistent with an asymmetric pattern, where the dominating potential structure extends deep into the polar cap boundary (PCB) region. The two patterns may either correspond to different stages of evolution of the same double arc system or represent two longitudinally separated double arc systems. For all spacecraft, the potential well of the poleward arc extends into the PCB region, whereas the density cavity does not but remains confined to R1. This suggests that the Alfvenic activity observed within the PCB region prevents the cavity formation, consistent with the associated FACs being roughly balanced over this region. The results show that Alfvenic and quasi-static acceleration operates jointly in the PCB region, varying from being about equally important (on C1) to being predominantly quasi-static (on C3/C4). The presence (absence) of an upward electron beam, associated with a positive potential structure and a downward current, observed by C1 (C4/C3) is expected from its short life time, shorter than the time lag between the Cluster spacecraft. The evolution involves both a broadening and a density reduction of the associated downward current sheet to below the critical current density above which parallel electric fields will form. The deepest potential well of 13 kV observed by C4 was located in Region 1, adjacent to the PCB region and coinciding with the deepest density cavity, with a minimum density of 0.1 cm(-3). The interface between Region 1 and the PCB region, coinciding with the steep density gradient, appears to be the leading edge of the cavity.
  •  
9.
  •  
10.
  • Sadeghi, Soheil, et al. (author)
  • Cluster Observations of Quasi-Static Potential Structures Overlapping with Alfvénic Regions
  • 2012
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202.
  • Journal article (other academic/artistic)abstract
    • Results are presented from an equatorward crossing of the Cluster spacecraft through the high-altitude auroral acceleration region, over a system of East-West aligned auroral arcs in the Southern hemisphere auroral oval. The event occurred during quiet geomagnetic conditions during the expansion phase of a weak substorm. Acceleration potential profiles of the quasi-static structures are determined from the particle and field data. The observations reveal a dynamically developing system of small-scale and large-scale quasi-static structures overlapping with Alfvénic regions. Such overlaps are found within the PSBL and inside the Region 2 of downward currents. No density cavities are seen in the overlap regions. Growths of small-scale potential structures were observed in the PSBL and in the middle of Region 2, during the ~1.5 minutes between the Cluster 4 and Cluster 3 passages. During this period, the Alfvénic regions retreated both at the poleward and equatorward oval boundaries, and the large-scale quasi-static potentials intensified.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16
Type of publication
journal article (12)
conference paper (2)
doctoral thesis (1)
licentiate thesis (1)
Type of content
peer-reviewed (13)
other academic/artistic (3)
Author/Editor
Nilsson, Hans (4)
Zhang, Y. (3)
Ärnlöv, Johan, 1970- (2)
Hankey, Graeme J. (2)
Wijeratne, Tissa (2)
Sahebkar, Amirhossei ... (2)
show more...
Hassankhani, Hadi (2)
McKee, Martin (2)
Madotto, Fabiana (2)
Koyanagi, Ai (2)
Castro, Franz (2)
Koul, Parvaiz A. (2)
Edvardsson, David (2)
Cooper, Cyrus (2)
Weiderpass, Elisabet ... (2)
Dhimal, Meghnath (2)
Vaduganathan, Muthia ... (2)
Nilsson, H (2)
Sheikh, Aziz (2)
Acharya, Pawan (2)
Gething, Peter W. (2)
Hay, Simon I. (2)
Schutte, Aletta E. (2)
Afshin, Ashkan (2)
Cornaby, Leslie (2)
Abbafati, Cristiana (2)
Abebe, Zegeye (2)
Afarideh, Mohsen (2)
Agrawal, Sutapa (2)
Alahdab, Fares (2)
Badali, Hamid (2)
Badawi, Alaa (2)
Bensenor, Isabela M. (2)
Bernabe, Eduardo (2)
Dandona, Lalit (2)
Dandona, Rakhi (2)
Esteghamati, Alireza (2)
Farvid, Maryam S. (2)
Feigin, Valery L. (2)
Fernandes, Joao C. (2)
Geleijnse, Johanna M ... (2)
Grosso, Giuseppe (2)
Hamidi, Samer (2)
Harikrishnan, Sivada ... (2)
Hassen, Hamid Yimam (2)
Islami, Farhad (2)
James, Spencer L. (2)
Jonas, Jost B. (2)
Kasaeian, Amir (2)
Khader, Yousef Saleh (2)
show less...
University
Royal Institute of Technology (9)
Luleå University of Technology (5)
Uppsala University (3)
Umeå University (2)
Lund University (2)
Chalmers University of Technology (2)
show more...
Karolinska Institutet (2)
Högskolan Dalarna (2)
Södertörn University (1)
show less...
Language
English (16)
Research subject (UKÄ/SCB)
Natural sciences (11)
Engineering and Technology (4)
Medical and Health Sciences (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view