SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sadiktsis Ioannis 1982 ) "

Sökning: WFRF:(Sadiktsis Ioannis 1982 )

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Papazian, Stefano, 1986-, et al. (författare)
  • Nontarget mass spectrometry and in silico molecular characterization of air pollution from the Indian subcontinent
  • 2022
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A combination of high-resolution mass spectrometry and computational molecular characterization techniques can structurally annotate up to 17% of organic compounds in fine particulate matter in highly polluted air sampled in the Maldives. Fine particulate-matter is an important component of air pollution that impacts health and climate, and which delivers anthropogenic contaminants to remote global regions. The complex composition of organic molecules in atmospheric particulates is poorly constrained, but has important implications for understanding pollutant sources, climate-aerosol interactions, and health risks of air pollution exposure. Here, comprehensive nontarget high-resolution mass spectrometry was combined with in silico structural prediction to achieve greater molecular-level insight for fine particulate samples (n = 40) collected at a remote receptor site in the Maldives during January to April 2018. Spectral database matching identified 0.5% of 60,030 molecular features observed, while a conservative computational workflow enabled structural annotation of 17% of organic structures among the remaining molecular dark matter. Compared to clean air from the southern Indian Ocean, molecular structures from highly-polluted regions were dominated by organic nitrogen compounds, many with computed physicochemical properties of high toxicological and climate relevance. We conclude that combining nontarget analysis with computational mass spectrometry can advance molecular-level understanding of the sources and impacts of polluted air.
  •  
2.
  • Batistuzzo, S., et al. (författare)
  • PAH exposure and relationship between buccal micronucleus cytome assay and urinary 1-hydroxypyrene levels among cashew nut roasting workers
  • 2016
  • Ingår i: Toxicology Letters. - : Elsevier BV. - 0378-4274 .- 1879-3169. ; 258, s. S223-S224
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study conducted the first assessment of the occupational risk associated to artisanal cashew nut roasting by the use of exposure and effect biomarkers, as well as the characterization and dispersion analysis of the released particulate matter (PM). The PM concentrations in the exposed area were higher than in the non-exposed area. Furthermore, in the control area yielded a higher prevalence of coarse particles, while in the exposed area was observed fine particles. The morphological analysis showed a wide variety of particles. Biomass burning tracers K, Cl, S and Ca were the major inorganic compounds and polycyclic aromatic hydrocarbons (PAHs) with mutagenic and carcinogenic potential, such as benzo[a]pyrene, benzo[b]fluoranthene, benzo[a]anthracene, benzo[j]fluoranthene and indeno[1,2,3-c,d]pyrene were the most abundant PAHs. In addition, atmospheric modeling analysis suggest that these particles can reach regions higher than 40 kilometers. Occupational PAH exposure was confirmed by increases in 1-OHP levels in cashew nut workers. The frequencies of BMCyt biomarkers of genotoxic (micronuclei and nuclear bud) and cytotoxic (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were higher in the exposed group (p < 0.0001) compared with the control group. The influence of factors such as age on the micronucleus was evidenced and a correlation between 1-OHP and MN was observed. It was the first study to found a correlation between these types of biomarkers. The uses of exposure and effect biomarkers were therefore efficient in assessing the occupational risk associated with artisanal cashew nut roasting and the high rates of PM2.5 are considered a potential contributor to this effect.
  •  
3.
  • de Oliveira Galvão, Marcos Felipe, et al. (författare)
  • DNA damage signaling and genotoxic effects induced by complex mixtures of PAHs generated by biomass burning air particulate matter in human lung cells
  • 2019
  • Ingår i: Toxicology Letters. - : Elsevier BV. - 0378-4274 .- 1879-3169. ; 314:SI, s. S132-S133
  • Tidskriftsartikel (refereegranskat)abstract
    • Most research concerning the effects of air pollutants on human health focuses on urban centers and on the role of vehicular and industrial emissions as major sources of pollution. However, approximately 3 billion people world-wide are exposed to air pollution from biomass burning [1]. Herein, particulate matter (PM) emitted from artisanal cashew nut roasting, an important economic and social activity worldwide [2,3], was investigated. This study focused on: i) chemical characterization of polycyclic aromatic hydrocarbons (PAHs) and their oxy-PAH derivatives; ii) time-dependent activation of DNA damage signaling and genotoxic effects, and iii) differential expression of genes involved in xenobiotic metabolism, inflammation, cell cycle arrest and DNA repair using A549 lung cells. Among the PAHs, chrysene, benzo[a]pyrene (B[a]P), benzo[b]fluoranthene, and benz[a]anthracene showed the highest concentrations (7.8-10 ng/m3), while among oxy-PAHs, benzanthrone and 9,10-anthraquinone were the most abundant. Testing of PM extracts was based on B[a]P equivalent doses (B[a]Peq). IC50 values for viability was 5.7 and 3.0 nM B[a]Peq at 24 h and 48 h, respectively. Based on this, all other experiments were conducted at doses up to 2 nM B[a]Peq. At these low doses, we observed a dose-dependent activation of DNA damage signaling (phosphorylation of Chk1) and genotoxicity (double strand breaks). In comparison, effects of B[a]P alone was observed at micromolar range. To our knowledge, no other study has demonstrated an activation of pChk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro [4], in lung cells exposed to biomass burning extracts. Persistent increased gene expression of several important stress response mediators of xenobiotic metabolism (CYP1A1, CYP1B1), inflammation (IL-8, TNF-α), cell cycle arrest (CDKN1A), and DNA repair (DDB2) was also identified. In conclusion, our data show high potency of biomass burning PM to induce cellular stress including genotoxicity, and more potently so when compared to B[a]P alone. Our study provides new data that will help elucidate the mechanism of lung cancer development associated with biomass burning. In addition, the results of this study support the establishment of new guidelines for human health protection in regions strongly impacted by biomass burning.
  •  
4.
  • de Oliveira Galvão, Marcos Felipe, et al. (författare)
  • Genotoxicity and DNA damage signaling in response to complex mixtures of PAHs in biomass burning particulate matter from cashew nut roasting
  • 2020
  • Ingår i: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 256
  • Tidskriftsartikel (refereegranskat)abstract
    • Approximately 3 billion people world-wide are exposed to air pollution from biomass burning. Herein, particulate matter(PM) emitted from artisanal cashew nut roasting, an important economic activity worldwide, was investigated. This study focused on: i) chemical characterization of polycyclic aromatic hydrocarbons (PAHs) and oxygenated (oxy-) PAHs; ii) intracellular levels of reactive oxygen species (ROS); iii) genotoxic effects and time- and dose-dependent activation of DNA damage signaling, and iv) differential expression of genes involved in xenobiotic metabolism, inflammation, cell cycle arrest and DNA repair, using A549 lung cells. Among the PAHs, chrysene, benzo[a]pyrene (B[a]P), benzo[b]fluoranthene, and benz[a]anthracene showed the highest concentrations (7.8–10 ng/m3), while benzanthrone and 9,10-anthraquinone were the most abundant oxy-PAHs. Testing of PM extracts was based on B[a]P equivalent doses (B[a]Peq). IC50 values for viability were 5.7 and 3.0 nM B[a]Peq at 24 h and 48 h, respectively. At these low doses, we observed a time- and dose-dependent increase in intracellular levels of ROS, genotoxicity (DNA strand breaks) and DNA damage signaling (phosphorylation of the protein checkpoint kinase 1 – Chk1). In comparison, effects of B[a]P alone was observed at micromolar range. To our knowledge, no previous study has demonstrated an activation of pChk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro, in lung cells exposed to cashew nut roasting extracts. Sustained induction of expression of several important stress response mediators of xenobiotic metabolism (CYP1A1, CYP1B1), ROS and pro-inflammatory response (IL-8, TNF-α, IL-2,COX2), and DNA damage response (CDKN1A and DDB2) was also identified. In conclusion, our data show high potency of cashew nut roasting PM to induce cellular stress including genotoxicity, and more potently when compared to B[a]P alone. Our study provides new data that will help elucidate the toxic effects of low-levels of PAH mixtures from air PM generated by cashew nut roasting.
  •  
5.
  • Ekner, Holly, et al. (författare)
  • Determination of polycyclic aromatic hydrocarbons in commercial olive oils by HPLC/GC/MS – Occurrence, composition and sources
  • 2022
  • Ingår i: Food Control. - : Elsevier BV. - 0956-7135 .- 1873-7129. ; 132
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycyclic aromatic hydrocarbons (PAHs) are a large class of organic compounds produced from incomplete combustion. Many PAHs are mutagenic and some are carcinogenic and pose a health risk to humans. Dietary intake of PAHs is a major route of exposure, where fats and edible oils are important contributors to overall dietary PAH exposure. Composed of hundreds of individual compounds as a complex mixture, only 16 PAHs are typically monitored in food and the environment.In this present study we analyzed 16 commercial olive oil samples from different countries of origin and type (virgin or refined oil) for their content of 45 PAHs using a high-performance liquid chromatograph coupled to a gas chromatograph with a mass spectrometric detector. The content of the 45 PAHs varied between 9.17–94.7 μg/kg (median: 30.1 μg/kg) in the different olive oil samples. Only one sample didn't meet the regulatory threshold levels for PAHs.The compositional profile of PAHs across the olive oil samples showed a high abundance of PAHs of lower molecular weights, and a large contribution of alkylated PAHs regardless of olive oil type. Direct contact with diesel exhaust emissions from mechanical harvesters has previously shown to affect PAH levels in olive oils. Using diagnostic PAH ratios, biomass/coal combustion and/or petroleum/fossil fuel combustion were indicated as important sources. Source apportionment by positive matrix factorization revealed diesel exhaust emission and biomass combustion as the two major sources of PAHs followed by traffic emissions. This suggests that air quality may have a considerable impact on pollution levels in olive oils and thus indirectly affect dietary exposure.
  •  
6.
  • Elihn, Karine, et al. (författare)
  • Air quality impacts of a large waste fire in Stockholm, Sweden
  • 2023
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 315
  • Tidskriftsartikel (refereegranskat)abstract
    • Fires in waste facilities are a common occurrence. Since many waste facilities are located adjacent to densely populated areas, these fires could potentially expose large populations to the emitted pollutants. However, at the moment there are only few field studies investigating the impact of waste fire emissions on air quality since the unpredictable nature of these events makes them challenging to capture. This study investigated the impact of a large and persistent un-prescribed fire in a waste storage facility in Stockholm county, Sweden, on the local air quality of two residential areas in close proximity to the fire. In-situ measurements of particulate matter, black carbon and nitrogen oxide concentrations were conducted both during open burning and after the fire was fully covered. In addition, filter samples were collected for offline analysis of organic composition, metal content and toxicity. Strongly increased concentrations of PM10, PM2.5 and black carbon were found during the open burning period, especially when the wind was coming from the direction of the fire. In addition, elevated concentrations of particulate heavy metals and polycyclic aromatic hydrocarbons were observed in the air during the open burning period. These results show that waste fires can have a strong impact on the air quality of nearby residential areas.
  •  
7.
  • Felipe de Oliveira Galvão, Marcos, et al. (författare)
  • Determination of whole mixture-based potency factors for cancer risk assessment of complex environmental mixtures by in vitro testing of standard reference materials
  • 2022
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 63, s. 98-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole mixture-based testing using in vitro new approach methodologies (NAMs) has been suggested to facilitate the hazard and risk assessment of complex environmental mixtures. Previous studies have shown that phosphorylation of DNA damage signaling proteins checkpoint kinase 1 (pChk1) and histone 2AX (γH2AX) are sensitive markers that can be used for estimating carcinogenicity potencies in vitro. Here, and with the aim to better validate the applicability, in vitro-based Mixture Potency Factors (MPFs) of Standard Reference Materials (SRMs) from environmental polycyclic aromatic hydrocarbon (PAH)-containing mixtures were determined and compared to published mutagenicity and tumorigenicity data. Also, genotoxicity was assessed by a flow cytometry-based micronucleus (MN) assay which showed that only benzo[a]pyrene (B[a]P) and coal tar SRM (SRM1597a) caused dose-dependent increases of MN formation, while extracts of diesel particulate matter (SRM1650b), diesel particulate extract (SRM1975), and urban dust (SRM1649b) did not. However, a dose-dependent activation of DNA damage signaling was observed for all PAHs and SRMs. The results demonstrated that all SRMs were more potent than B[a]P, at B[a]P-equivalent concentrations, to induce pChk1 and γH2AX, and that western blot was more sensitive than the In-Cell Western assay in detecting their activation in response to these complex mixtures. Relative MPFs, based on dose–response modelling of pChk1 and γH2AX, ranged 113 – 5270 for the SRMs, indicating several orders of magnitude higher genotoxic potential than B[a]P. Moreover, these MPFs were in good agreement with potency values based on published data from Salmonella mutagenicity and in vivo carcinogenicity studies. In conclusion, these comparisons further validate the feasibility of applying in vitro NAMs, such as whole-mixture based MPFs, in cancer risk assessment of complex mixtures.
  •  
8.
  • Hunter, Amanda, et al. (författare)
  • Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters
  • 2014
  • Ingår i: Particle and Fibre Toxicology. - : BioMed Central (BMC). - 1743-8977. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. Methods: In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m3 particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4–6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Results: Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all). Conclusions: Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.
  •  
9.
  • Lim, Hwanmi, et al. (författare)
  • Polycyclic aromatic compounds in particulate matter and indoor dust at preschools in Stockholm, Sweden : Occurrence, sources and genotoxic potential in vitro
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 755
  • Tidskriftsartikel (refereegranskat)abstract
    • Children spend a significant amount of their day in preschool; thus, environmental quality at preschools may have an impact on children’s health. In the present study, we analyzed polycyclic aromatic compounds (PACs), including PAHs, alkylated PAHs and oxygenated PAHs (OPAHs), in indoor and outdoor air particulate matter (PM10) and indoor dust at preschools in Stockholm, Sweden. There were significant correlations between PAC levels in outdoor and indoor PM10, with in general higher PAC levels outdoors. Fluoranthene and pyrene were detected at highest levels in all sample types, although phenanthrene and methylated phenanthrene derivatives also were found at high levels in indoor dust. In addition, the highly carcinogenic PAHs 7H-benzo[c]fluorene, 7,12-dimethylbenz[a]anthracene, benz[j]aceanthrylene, and dibenzo[a,l]pyrene were detected in some samples. Benzanthrone was the most prevalent OPAH in PM10 samples and 9,10-anthraquinone in indoor dust. Based on diagnostic ratios and Positive Matrix Factorization we identified vehicle emission and biomass burning as important PAC sources for all samples analyzed. However, poor correlation between PAC levels in indoor PM10 and indoor dust suggested additional sources for the latter. Measuring activation of DNA damage signaling in human cells exposed to organic extracts of the samples indicated substantial genotoxic potential of outdoor PM10 and indoor dust. Determination of benzo[a]pyrene equivalents demonstrated that the highly potent PAHs benz[j]aceanthrylene and dibenz[a,h]anthracene contributed more than 20% to the total carcinogenic potency of the samples. We conclude that PAC levels at Stockholm preschools are relatively low but that outdoor air quality may impact on the indoor environment.
  •  
10.
  • Nielsen, Ingeborg E., et al. (författare)
  • Time-resolved analysis of particle emissions from residential biomass combustion – Emissions of refractory black carbon, PAHs and organic tracers
  • 2017
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 165, s. 179-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of refractory black carbon, such as absorption enhancement by lensing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (15)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Sadiktsis, Ioannis, ... (16)
Westerholm, Roger (6)
Dreij, Kristian (6)
Boman, Christoffer (4)
Sandström, Thomas (2)
Blomberg, Anders (2)
visa fler...
Nyström, Robin (2)
Mills, Nicholas L. (2)
Newby, David E (2)
Sandström, Thomas, 1 ... (1)
Mathew, Aji P., 1971 ... (1)
Johansson, Christer (1)
Martin, Jonathan W. (1)
Johansson, Ulf (1)
Gustafsson, Örjan (1)
Martinsson, Johan (1)
Pagels, Joakim (1)
Andersson, August (1)
Blomberg, Anders, 19 ... (1)
Lim, Hwanmi (1)
Ahmed, Trifa Mohamma ... (1)
Jaworski, Aleksander ... (1)
Dreij, K (1)
Karlsson, Hanna L. (1)
Nilsson, Ulrika (1)
Schlesinger, Daniel (1)
Eriksson, Axel C. (1)
Pourazar, Jamshid (1)
Bosson, Jenny A., 19 ... (1)
Kabele, Mikael (1)
Bosson, Jenny A. (1)
Mikoviny, Tomáš (1)
Wisthaler, Armin (1)
Ruiz-Caldas, Maria-X ... (1)
Athanassiadis, Ioann ... (1)
Westerholm, Roger, P ... (1)
Lindgren, Robert (1)
Lucking, Andrew J (1)
Langrish, Jeremy P (1)
Mudway, Ian S (1)
Batistuzzo, S. (1)
de Oliveira Galvão, ... (1)
Duarte, E. S. (1)
Hoelzemann, J. J. (1)
Menezes Filho, J. (1)
Rannug, Ulf (1)
Bonnefille, Bénilde (1)
Papazian, Stefano, 1 ... (1)
Martin, Jonathan W., ... (1)
Budhavant, Krishnaka ... (1)
visa färre...
Lärosäte
Stockholms universitet (16)
Karolinska Institutet (7)
Umeå universitet (4)
Uppsala universitet (1)
Linköpings universitet (1)
Lunds universitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Teknik (3)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy