SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saenger Erik) "

Sökning: WFRF:(Saenger Erik)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lupi, Matteo, et al. (författare)
  • Regional earthquakes followed by delayed ground uplifts at Campi Flegrei Caldera, Italy : Arguments for a causal link
  • 2017
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 474, s. 436-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Earthquake-triggered volcanic activity promoted by dynamic and static stresses are considered rare and difficult-to-capture geological processes. Calderas are ideal natural laboratories to investigate earthquake volcano interactions due to their sensitivity to incoming seismic energy. The Campi Flegrei caldera, Italy, is one of the most monitored volcanic systems worldwide. We compare ground elevation time series at Campi Flegrei with earthquake catalogues showing that uplift events at Campi Flegrei are associated with large regional earthquakes. Such association is supported by (yet non-definitive) binomial tests. Over a 70-year time window we identify 14 uplift events, 12 of them were preceded by an earthquake, and for 8 of them the earthquake-to-uplift timespan ranges from immediate responses to 1.2 yr. Such variability in the response delay may be due to the preparedness of the system with faster responses probably occurring in periods during which the Campi Flegrei system was already in a critical state. To investigate the process that may be responsible for the proposed association we simulate the propagation of elastic waves and show that passing body waves impose high dynamic strains at the roof of the magmatic reservoir of the Campi Flegrei at about 7 km depth. This may promote a short-lived embrittlement of the magma reservoir's carapace otherwise marked by a ductile behaviour. Such failure allows magma and exsolved volatiles to be released from the magmatic reservoir. The fluids, namely exsolved volatiles and/or melts, ascend through a nominally plastic zone above the magmatic reservoir. This mechanism and the associated inherent uncertainties require further investigations but the new concept already implies that geological processes triggered by passing seismic waves may become apparent several months after passage of the seismic waves. (C) 2017 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  •  
4.
  • Saenger, Erik H., et al. (författare)
  • Digital material laboratory: Wave propagation effects in open-cell aluminium foams
  • 2012
  • Ingår i: International Journal of Engineering Science. - : Elsevier BV. - 0020-7225. ; 58, s. 115-123
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is concerned with numerical wave propagation effects in highly porous media using digitized images of aluminium foam. Starting point is a virtual material laboratory approach. The aluminium foam microstructure is imaged by 3D X-ray tomography. Effective velocities for the fluid-saturated media are derived by dynamic wave propagation simulations. We apply a displacement-stress rotated staggered finite-difference grid technique to solve the elastodynamic wave equation. The used setup is similar to laboratory ultrasound measurements and computed results are in agreement with our experimental data. Theoretical investigations allow to quantify the influence of the interaction of foam and fluid during wave propagation. Together with simulations using an artificial dense foam we are able to determine the tortuosity of aluminium foam.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy