SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Safaric Luka) "

Sökning: WFRF:(Safaric Luka)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björn, Annika, et al. (författare)
  • Substrate and operational conditions as regulators of fluid properties in full-scale continuous stirred-tank biogas reactors - implications for rheology-driven power requirements
  • 2018
  • Ingår i: Water Science and Technology. - : IWA PUBLISHING. - 0273-1223 .- 1996-9732. ; 78:4, s. 814-826
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding fluid rheology is important for optimal design and operation of continuous stirred-tank biogas reactors (CSTBRs) and is the basis for power requirement estimates. Conflicting results have been reported regarding the applicability of total solid (TS) and/or total volatile solid (TVS) contents of CSTBR fluids as proxies for rheological properties. Thus, the present study investigates relationships between rheological properties of 12 full-scale CSTBR fluids, their substrate profiles, and major operational conditions, including pH, TS and TVS contents, organic loading rate, hydraulic retention time, and temperature. Rheology-driven power requirements based on various fluid characteristics were evaluated for a general biogas reactor setup. The results revealed a significant correlation only between the rheological fluid properties and TS or TVS contents for sewage sludge digesters and thermophilic co-digesters (CD), but not for mesophilic CD. Furthermore, the calculated power requirements for pumping and mixing, based on the various fluid characteristics of the studied CSTBRs, varied broadly irrespective of TS and TVS contents. Thus, this study shows that the TS and/or TVS contents of digester fluid are not reliable estimators of the rheological properties in CSTBRs digesting substrates other than sewage sludge.
  •  
2.
  •  
3.
  •  
4.
  • Ekstrand, Eva-Maria, et al. (författare)
  • Viscosity dynamics and the production of extracellular polymeric substances and soluble microbial products during anaerobic digestion of pulp and paper mill wastewater sludges
  • 2020
  • Ingår i: Bioprocess and biosystems engineering (Print). - : SPRINGER. - 1615-7591 .- 1615-7605. ; 43:2, s. 283-291
  • Tidskriftsartikel (refereegranskat)abstract
    • The production processes of the pulp and paper industry often run in campaigns, leading to large variations in the composition of wastewaters and waste sludges. During anaerobic digestion (AD) of these wastes, the viscosity or the production of extracellular polymeric substances (EPS) and soluble microbial products (SMP) may be affected, with the risk of foam formation, inefficient digester mixing or poor sludge dewaterability. The aim of this study was to investigate how viscosity and production of EPS and SMP during long-term AD of pulp and paper mill sludge is affected by changes in organic loading rate (OLR) and hydraulic retention time (HRT). Two mesophilic lab-scale continuous stirred tank reactors (CSTRs) were operated for 800 days (R1 and R2), initially digesting only fibre sludge, then co-digesting fibre sludge and activated sludge. The HRT was lowered, followed by an increase in the OLR. Reactor fluids were sampled once a month for rheological characterization and analysis of EPS and SMP. The production of the protein fraction of SMP was positively correlated to the OLR, implicating reduced effluent qualities at high OLR. EPS formation correlated with the magnesium content, and during sulphate deficiency, the production of EPS and SMP increased. At high levels of EPS and SMP, there was an increase in viscosity of the anaerobic sludges, and dewatering efficiency was reduced. In addition, increased viscosity and/or the production of EPS and SMP were important factors in sludge bulking and foam formation in the CSTRs. Sludge bulking was avoided by more frequent stirring.
  •  
5.
  • Ometto, F., et al. (författare)
  • Inclusion of Saccharina latissima in conventional anaerobic digestion systems
  • 2018
  • Ingår i: Environmental technology. - : Taylor & Francis. - 0959-3330 .- 1479-487X. ; 39:5, s. 628-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Loading macroalgae into existing anaerobic digestion (AD) plants allows us to overcome challenges such as low digestion efficiencies, trace elements limitation, excessive salinity levels and accumulation of volatile fatty acids (VFAs), observed while digesting algae as a single substrate. In this work, the co-digestion of the brown macroalgae Saccharina latissima with mixed municipal wastewater sludge (WWS) was investigated in mesophilic and thermophilic conditions. The hydraulic retention time (HRT) and the organic loading rate (OLR) were fixed at 19 days and 2.1 g l-1 d-1of volatile solids (VS), respectively. Initially, WWS was digested alone. Subsequently, a percentage of the total OLR (20%, 50% and finally 80%) was replaced by S. latissima biomass. Optimal digestion conditions were observed at medium-low algae loading (=50% of total OLR) with an average methane yield close to [Formula: see text] and [Formula: see text] in mesophilic and thermophilic conditions, respectively. The conductivity values increased with the algae loading without inhibiting the digestion process. The viscosities of the reactor sludges revealed decreasing values with reduced WWS loading at both temperatures, enhancing mixing properties.
  •  
6.
  • Safaric, Luka, 1988-, et al. (författare)
  • A Comparative Study of Biogas Reactor Fluid Rheology : Implications for Mixing Profile and Power Demand
  • 2019
  • Ingår i: Processes. - Basel, Switzerland : MDPI. - 2227-9717. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaerobic digestion (AD) is an established process for integrating waste management with renewable energy and nutrient recovery. Much of the research in this field focuses on the utilisation of new substrates, yet their effects on operational aspects such as fluid behaviour and power requirement for mixing are commonly overlooked, despite their importance for process optimisation. This study analysed rheological characteristics of samples from 21 laboratory-scale continuous stirred-tank biogas reactors (CSTBRs) digesting a range of substrates, in order to evaluate substrate effect on mixing efficiency and power demand through computational fluid dynamics (CFD). The results show that substrate and process parameters, such as solids content and organic loading, all have a significant effect on CSTBR fluid rheology. The correlation levels between rheological and process parameters were different across substrates, while no specific fluid behaviour patterns could be associated with substrate choice. Substrate should thus be considered an equally important rheology effector as process parameters. Additional substrate-related parameters should be identified to explain the differences in correlations between rheological and process parameters across substrate groups. The CFD modelling revealed that the rheology differences among the AD processes have significant implications for mixing efficiency and power demand of the CSTBRs, highlighting the importance of considering the substrate-induced effects on CSTBR rheology before including a new substrate.
  •  
7.
  • Šafarič, Luka, 1988- (författare)
  • Anaerobic Digester Fluid Rheology and Process Efficiency : Interactions of Substrate Composition, Trace Element Availability, and Microbial Activity
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • As the anthropogenic greenhouse gas emissions continue imposing stress on our environment, it is becoming increasingly important to identify and implement new renewable technologies. Biogas production through anaerobic digestion has a great potential, since it links waste treatment with extraction of renewable energy, enabling circular bio-economies that are vital for a sustainable future.For biogas to have an important role as a renewable energy carrier in society, the scale of its production will need to be increased substantially. New substrates need to be introduced along with raising organic loading rates of the reactors to increase the rate of biogas production. This contributes to challenges in maintaining process stability, thus increasing the risk for process disturbances, including problems that were not commonly encountered before. These difficulties may be particularly pronounced when a broad range of new, largely untested substrates are introduced, leading to an increased heterogeneity of organic material entering the reactors. In the case of currently the most common reactor type; the continuous stirred-tank biogas reactor (CSTBR); such problems may include shifts in rheology (i.e. fluid behaviour) of the anaerobic digester sludge. This may lead to increased energy consumption and decreased digester mixing efficiencies, which in turn may lead to inefficient biogas processes, ultimately decreasing the economic and environmental viability of biogas production. Much is still unknown regarding how rheology shifts happen in biogas reactors, particularly when it comes to what role the substrate plays in rheological dynamics, as compared to the microbial community during varying levels of biogas process stability.This thesis elucidates the interactions between substrate type, microbial community and its metabolic activity, and anaerobic sludge rheology. A number of sludge samples from mesophilic and thermophilic CSTBRs digesting a broad range of substrates was analysed for their rheology. The specific effects of individual substrate types on CSTBR sludge rheology and the resulting implications for stirring power requirements and mixing efficiency were investigated. In order to also asses to which extent the microbial metabolism affects rheology at different levels of process disturbance, an experiment with a trace-element-induced inhibition of specific metabolic pathways under mesophilic reactor conditions was performed. This was used to identify the sequence of different interactions that occur in the reactor after the process begins to fail, and to evaluate how these interactions link to changes in digester sludge rheology. Finally, a case study of a disturbed thermophilic anaerobic digestion process was performed, including the monitoring of the response of rheology in relation to process stability, which was modified by changing trace element concentrations. The use of artificial substrate without polymeric compounds in both cases allowed for an evaluation of effects of the microbial community and its metabolic products on rheology without including the effects of complex substrates.The results showed that substrate type has a large effect on how different process parameters correlate with fluid behaviour. This was particularly apparent in the case of total solids and total volatile solids, which correlated well with rheological parameters for samples from reactors digesting agricultural waste, sewage sludge, paper mill waste, or food waste, but not for mesophilic co-digesters. Among the different substrates investigated, food waste was generally observed to lead to the highest limit viscosities (i.e. apparent viscosities at high shear rates, where it becomes linear and constant) of the anaerobic sludge, while digestion of paper mill waste and thermophilic co-digestion led to some of the lowest. No fluid type could be clearly coupled to a specific substrate, but it could be observed that increased solids content could generally be associated with more complex, non-Newtonian rheological behaviour. The differences in fluid characteristics between reactors corresponded to large differences in modelled stirring power requirements and mixing efficiency. The results indicated that fluids with high values of rheological parameters, such as the consistency index (K) or yield stress (τ0), would likely require more power or an adapted stirring system to achieve complete mixing. The substrates generally contributed more to the rheology characteristics of the anaerobic sludge than microbial cells on their own. Trace element-induced process disturbance initially led to the inhibition of specific microbial groups among methanogenic archaea or their syntrophic partners, which later escalated to broader inhibition of many microbial groups due to the accumulation of fermentation products. This resulted in microbial cell washout with a corresponding decrease of the contribution of the cells to anaerobic sludge rheology. A recovery of the thermophilic anaerobic digestion process was possible after the supplementation of selenium and tungsten was increased, resulting in increased propionate turnover rates, growing cell densities, and higher viscosity. Major shifts in the methanogenic community were observed, corresponding to the level of process stability. It could be concluded based on these experiments that the specific effect of microbial cells and their activity on sludge rheology were linked to cell density, which corresponded to process stability.A conceptual scheme was developed based on the studies in this thesis, defining complex interactions between substrate, microbial metabolism, and anaerobic sludge rheology in biogas processes. The possible causes of rheology shifts are visualised and discussed.
  •  
8.
  • Safaric, Luka, et al. (författare)
  • Dynamics of a Perturbed Microbial Community during Thermophilic Anaerobic Digestion of Chemically Defined Soluble Organic Compounds
  • 2018
  • Ingår i: Microorganisms. - : MDPI. - 2076-2607. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of microbial community dynamics in relation to process perturbations is fundamental to understand and deal with the instability of anaerobic digestion (AD) processes. This study aims to investigate the microbial community structure and function of a thermophilic AD process, fed with a chemically defined substrate, and its association with process performance stability. Next generation amplicon sequencing of 16S ribosomal RNA (rRNA) genes revealed that variations in relative abundances of the predominant bacterial species, Defluviitoga tunisiensis and Anaerobaculum hydrogeniformans, were not linked to the process performance stability, while dynamics of bacterial genera of low abundance, Coprothermobacter and Defluviitoga (other than D. tunisiensis), were associated with microbial community function and process stability. A decrease in the diversity of the archaeal community was observed in conjunction with process recovery and stable performance, implying that the high abundance of specific archaeal group(s) contributed to the stable AD. Dominance of hydrogenotrophic Methanoculleus particularly corresponded to an enhanced microbial acetate and propionate turnover capacity, whereas the prevalence of hydrogenotrophic Methanothermobacter and acetoclastic Methanosaeta was associated with instable AD. Acetate oxidation via syntrophic interactions between Coprothermobacter and Methanoculleus was potentially the main methane-formation pathway during the stable process. We observed that supplementation of Se and W to the medium improved the propionate turnover by the thermophilic consortium. The outcomes of our study provided insights into the community dynamics and trace element requirements in relation to the process performance stability of thermophilic AD.
  •  
9.
  • Safaric, Luka, 1988-, et al. (författare)
  • Effect of Cobalt, Nickel, and Selenium/Tungsten Deficiency on Mesophilic Anaerobic Digestion of Chemically Defined Soluble Organic Compounds
  • 2020
  • Ingår i: Microorganisms. - : MDPI. - 2076-2607. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Trace elements (TEs) are vital for anaerobic digestion (AD), due to their role as cofactors in many key enzymes. The aim of this study was to evaluate the effects of specific TE deficiencies on mixed microbial communities during AD of soluble polymer-free substrates, thus focusing on AD after hydrolysis. Three mesophilic (37 degrees C) continuous stirred-tank biogas reactors were depleted either of Co, Ni, or a combination of Se and W, respectively, by discontinuing their supplementation. Ni and Se/W depletion led to changes in methane kinetics, linked to progressive volatile fatty acid (VFA) accumulation, eventually resulting in process failure. No significant changes occurred in the Co-depleted reactor, indicating that the amount of Co present in the substrate in absence of supplementation was sufficient to maintain process stability. Archaeal communities remained fairly stable independent of TE concentrations, while bacterial communities gradually changed with VFA accumulation in Ni- and Se-/W-depleted reactors. Despite this, the communities remained relatively similar between these two reactors, suggesting that the major shifts in composition likely occurred due to the accumulating VFAs. Overall, the results indicate that Ni and Se/W depletion primarily lead to slower metabolic activities of methanogenic archaea and their syntrophic partners, which then has a ripple effect throughout the microbial community due to a gradual accumulation of intermediate fermentation products.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy