SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sahin Ali) "

Sökning: WFRF:(Sahin Ali)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
5.
  •  
6.
  • Hussein, Mohamed Ahmed Mohamady, et al. (författare)
  • Dual-drug delivery of Ag-chitosan nanoparticles and phenytoin via core-shell PVA/PCL electrospun nanofibers
  • 2021
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 270
  • Tidskriftsartikel (refereegranskat)abstract
    • Dual-drug delivery systems were constructed through coaxial techniques, which were convenient for the model drugs used the present work. This study aimed to fabricate core-shell electrospun nanofibrous membranes displaying simultaneous cell proliferation and antibacterial activity. For that purpose, phenytoin (Ph), a well-known proliferative agent, was loaded into a polycaprolactone (PCL) shell membrane, and as-prepared silver-chitosan nanoparticles (Ag-CS NPs), as biocidal agents, were embedded in a polyvinyl alcohol (PVA) core layer. The morphology, chemical composition, mechanical and thermal properties of the nanofibrous membranes were characterized by FESEM/STEM, FTIR and DSC. The coaxial PVA-Ag CS NPs/PCL-Ph nanofibers (NFs) showed more controlled Ph release than PVA/PCL-Ph NFs. There was notable improvement in the morphology, thermal, mechanical, antibacterial properties and cytobiocompatibility of the fibers upon incorporation of Ph and Ag-CS NPs. The proposed core-shell PVA/PCL NFs represent promising scaffolds for tissue regeneration and wound healing by the effective dual delivery of phenytoin and Ag-CS NPs.
  •  
7.
  •  
8.
  • Ebrahimi-Fakhari, Darius, et al. (författare)
  • Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia
  • 2020
  • Ingår i: Brain. - OXFORD ENGLAND : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143:10, s. 2929-2944
  • Tidskriftsartikel (refereegranskat)abstract
    • Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0-49.3 years). While the mean age at symptom onset was 0.8 +/- 0.6 years [standard deviation (SD), range 0.2-5.0], the mean age at diagnosis was 10.2 +/- 8.5 years (SD, range 0.1-46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 +/- 5.1 years, SD) and later tetraplegia (mean age: 16.1 +/- 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 +/- 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 +/- 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an 'AP-4 deficiency syndrome'. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.
  •  
9.
  • Mokkapati, Venkata Raghu, 1981, et al. (författare)
  • NaB integrated graphene oxide membranes for enhanced cell viability and stem cell properties of human adipose stem cells
  • 2016
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 6:61, s. 56159-56165
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present the integration of boron (NaB) with graphene oxide (GO) to develop a new class of membranes which are biocompatible and cost-effective for cell and tissue culture studies. Ethanol (EtOH) assisted the uniform dispersion of GO flakes on top of a glass substrate. We investigated the effect of a GO + NaB membrane on the growth and proliferation of hASCs. hASCs showed better cell viability on NaB integrated GO membranes compared to their respective controls. The concentrations of NaB and GO are 0.02% and 1/20 of stock (0.024%) respectively. To our knowledge this is the first time that enhanced cell proliferation and attachment ability of hASCs with NaB integrated GO membranes has been observed. Our study provides a platform for the development of 3D-GO scaffold systems combined with NaB in tissue engineering.
  •  
10.
  • Ruilope, LM, et al. (författare)
  • Design and Baseline Characteristics of the Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease Trial
  • 2019
  • Ingår i: American journal of nephrology. - : S. Karger AG. - 1421-9670 .- 0250-8095. ; 50:5, s. 345-356
  • Tidskriftsartikel (refereegranskat)abstract
    • <b><i>Background:</i></b> Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. <b><i>Patients and</i></b> <b><i>Methods:</i></b> The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate ≥25 mL/min/1.73 m<sup>2</sup> and albuminuria (urinary albumin-to-creatinine ratio ≥30 to ≤5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level α = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. <b><i>Conclusions:</i></b> FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy