SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sahlin Ullrika) "

Sökning: WFRF:(Sahlin Ullrika)

  • Resultat 1-10 av 68
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Amano, Tatsuya, et al. (författare)
  • Transforming Practice : Checklists for Delivering Change
  • 2022
  • Ingår i: Transforming Conservation : A Practical Guide to Evidence and Decision Making - A Practical Guide to Evidence and Decision Making. - 9781800648562 - 9781800648586 ; , s. 367-386
  • Bokkapitel (refereegranskat)abstract
    • Delivering a revolution in evidence use requires a cultural change across society. For a wide range of groups (practitioners, knowledge brokers, organisations, organisational leaders, policy makers, funders, researchers, journal publishers, the wider conservation community, educators, writers, and journalists), options are described to facilitate a change in practice, and a series of downloadable checklists is provided.
  •  
3.
  • Baey, Charlotte, et al. (författare)
  • A model to account for data dependency when estimating floral cover in different land use types over a season
  • 2017
  • Ingår i: Environmental and Ecological Statistics. - : Springer Science and Business Media LLC. - 1352-8505 .- 1573-3009. ; 24:4, s. 505-527
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a model to consider data dependencies and assess spatial and temporal variability in land use specific floral coverage across landscapes. Data dependence arising from repeated measurements across the flowering season is taken into account using hierarchical Archimedean copulas, where the correlation is assumed to be stronger within seasonal periods than between periods. For each seasonal period, a bounded probability distribution is assigned to capture spatial variability in floral cover. The model uses a Bayesian approach and can assess land-use-specific floral covers by integrating experts judgments and field data. The model is applied to assess floral covers in four land use types in southern Sweden, where seasonal variability is captured by dividing the season into two periods according to winter oilseed rape flowering. Floral cover is updated using Markov Chain Monte Carlo sampling based on data from 16 landscapes and 2 years, with repeated measures available from each of the two seasonal periods. Our results indicate that considering data dependence improved the estimation of floral cover based on data observed during a season. Different copula families specifying multivariate probability distributions were tested, and no family had a consistently higher performance in the four tested land use types. Uncertainty in both mode and variability of floral cover was higher when data dependence were accounted for. Posterior modes of floral covers in semi-natural grassland were higher than in field edges, but both expert’s best guesses were higher than these estimates. This confirms previous findings in expert elicitation processes that experts may fail to discriminate extreme values on a bounded range. Floral cover in flower strips were estimated to be smaller/higher than semi-natural grasslands early/late in the season. The mode of floral cover in oil seed rape was estimated to be close to 100%, and higher than estimates provided by expert judgment. Floral covers for different land use classes are key parameters when quantifying floral resources at a landscape level whose assessments rely on both expert judgment and field measurements.
  •  
4.
  • Baey, Charlotte, et al. (författare)
  • Calibration of a bumble bee foraging model using Approximate Bayesian Computation
  • 2023
  • Ingår i: Ecological Modelling. - : Elsevier BV. - 0304-3800. ; 477
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Challenging calibration of complex models can be approached by using prior knowledge on the parameters. However, the natural choice of Bayesian inference can be computationally heavy when relying on Markov Chain Monte Carlo (MCMC) sampling. When the likelihood of the data is intractable, alternative Bayesian methods have been proposed. Approximate Bayesian Computation (ABC) only requires sampling from the data generative model, but may be problematic when the dimension of the data is high. 2. We studied alternative strategies to handle high dimensional data in ABC applied to the calibration of a spatially explicit foraging model for Bombus terrestris. The first step consisted in building a set of summary statistics carrying enough biological meaning, i.e. as much as the original data, and then applying ABC on this set. Two ABC strategies, the use of regression adjustment leading to the production of ABC posterior samples, and the use of machine learning approaches to approximate ABC posterior quantiles, were compared with respect to coverage of model estimates and true parameter values. The comparison was made on simulated data as well as on data from two field studies. 3. Results from simulated data showed that some model parameters were easier to calibrate than others. Approaches based on random forests in general performed better on simulated data. They also performed well on field data, even though the posterior predictive distribution exhibited a higher variance. Nonlinear regression adjustment performed better than linear ones, and the classical ABC rejection algorithm performed badly. 4. ABC is an interesting and appealing approach for the calibration of complex models in biology, such as spatially explicit foraging models. However, while ABC methods are easy to implement, they often require considerable tuning.
  •  
5.
  • Blanke, Jan Hendrik, et al. (författare)
  • Assessing the impact of changes in land-use intensity and climate on simulated trade-offs between crop yield and nitrogen leaching
  • 2017
  • Ingår i: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809. ; 239, s. 385-398
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, a global vegetation model (LPJ-GUESS) is forced with spatial information (Nomenclature of Units for Territorial Statistics (NUTS) 2 level) of land-use intensity change in the form of nitrogen (N) fertilization derived from a model chain which informed the Common Agricultural Policy Regionalized Impact (CAPRI) model. We analysed the combined role of climate change and land-use intensity change for trade-offs between agricultural yield and N leaching in the European Union under two plausible scenarios up until 2040. Furthermore, we assessed both driver importance and uncertainty in future trends based on an alternative land-use intensity dataset derived from an integrated assessment model. LPJ-GUESS simulated an increase in wheat and maize yield but also N leaching for most regions when driven by changes in land-use intensity and climate under RCP 8.5. Under RCP 4.5, N leaching is reduced in 53% of the regions while there is a trade-off in crop productivity. The most important factors influencing yield were CO2 (wheat) and climate (maize), but N application almost equaled these in importance. For N leaching, N application was the most important factor, followed by climate. Therefore, using a constant N application dataset in the absence of future projections has a substantial effect on simulated ecosystem responses, especially for maize yield and N leaching. This study is a first assessment of future N leaching and yield responses based on projections of climate and land-use intensity. It further highlights the importance of accounting for changes in future N applications and land-use intensity in general when evaluating environmental impacts over long time periods.
  •  
6.
  • Blanke, Jan, et al. (författare)
  • Implications of accounting for management intensity on carbon and nitrogen balances of European grasslands
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • European managed grasslands are amongst the most productive in the world. Besides temperature and the amount and timing of precipitation, grass production is also highly controlled by applications of nitrogen fertilizers and land management to sustain a high productivity. Since management characteristics of pastures vary greatly across Europe, land-use intensity and their projections are critical input variables in earth system modeling when examining and predicting the effects of increasingly intensified agricultural and livestock systems on the environment. In this study, we aim to improve the representation of pastures in the dynamic global vegetation model LPJ-GUESS. This is done by incorporating daily carbon allocation for grasses as a foundation to further implement daily land management routines and land-use intensity data into the model to discriminate between intensively and extensively used regions. We further compare our new simulations with leaf area index observations, reported regional grassland productivity, and simulations conducted with the vegetation model ORCHIDEE-GM. Additionally, we analyze the implications of including pasture fertilization and daily management compared to the standard version of LPJ-GUESS. Our results demonstrate that grassland productivity cannot be adequately captured without including land-use intensity data in form of nitrogen applications. Using this type of information improved spatial patterns of grassland productivity significantly compared to standard LPJ-GUESS. In general, simulations for net primary productivity, net ecosystem carbon balance and nitrogen leaching were considerably increased in the extended version. Finally, the adapted version of LPJ-GUESS, driven with projections of climate and land-use intensity, simulated an increase in potential grassland productivity until 2050 for several agro-climatic regions, most notably for the Mediterranean North, the Mediterranean South, the Atlantic Central and the Atlantic South.
  •  
7.
  • Blasi, Maria, et al. (författare)
  • A model of wild bee populations accounting for spatial heterogeneity and climate-induced temporal variability of food resources at the landscape level
  • 2022
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The viability of wild bee populations and the pollination services that they provide are driven by the availability of food resources during their activity period and within the surroundings of their nesting sites. Changes in climate and land use influence the availability of these resources and are major threats to declining bee populations. Because wild bees may be vulnerable to interactions between these threats, spatially explicit models of population dynamics that capture how bee populations jointly respond to land use at a landscape scale and weather are needed. Here, we developed a spatially and temporally explicit theoretical model of wild bee populations aiming for a middle ground between the existing mapping of visitation rates using foraging equations and more refined agent-based modeling. The model is developed for Bombus sp. and captures within-season colony dynamics. The model describes mechanistically foraging at the colony level and temporal population dynamics for an average colony at the landscape level. Stages in population dynamics are temperature-dependent triggered by a theoretical generalized seasonal progression, which can be informed by growing degree days. The purpose of the LandscapePhenoBee model is to evaluate the impact of system changes and within-season variability in resources on bee population sizes and crop visitation rates. In a simulation study, we used the model to evaluate the impact of the shortage of food resources in the landscape arising from extreme drought events in different types of landscapes (ranging from different proportions of semi-natural habitats and early and late flowering crops) on bumblebee populations.
  •  
8.
  • Brandmaier, Stefan, et al. (författare)
  • PLS-Optimal: A stepwise D-Optimal design based on latent variables
  • 2012
  • Ingår i: Journal of Chemical Information and Modeling. - : American Chemical Society (ACS). - 1549-9596 .- 1549-960X. ; 52:4, s. 975-983
  • Tidskriftsartikel (refereegranskat)abstract
    • Several applications, such as risk assessment within REACH or drug discovery, require reliable methods for the design of experiments and efficient testing strategies. Keeping the number of experiments as low as possible is important from both a financial and an ethical point of view, as exhaustive testing of compounds requires significant financial resources and animal lives. With a large initial set of compounds, experimental design techniques can be used to select a representative subset for testing. Once measured, these compounds can be used to develop quantitative structure–activity relationship models to predict properties of the remaining compounds. This reduces the required resources and time. D-Optimal design is frequently used to select an optimal set of compounds by analyzing data variance. We developed a new sequential approach to apply a D-Optimal design to latent variables derived from a partial least squares (PLS) model instead of principal components. The stepwise procedure selects a new set of molecules to be measured after each previous measurement cycle. We show that application of the D-Optimal selection generates models with a significantly improved performance on four different data sets with end points relevant for REACH. Compared to those derived from principal components, PLS models derived from the selection on latent variables had a lower root-mean-square error and a higher Q2 and R2. This improvement is statistically significant, especially for the small number of compounds selected.
  •  
9.
  •  
10.
  • Cassani, Stefano, et al. (författare)
  • Evaluation of CADASTER QSAR Models for the Aquatic Toxicity of (Benzo)triazoles and Prioritisation by Consensus Prediction
  • 2013
  • Ingår i: ATLA (Alternatives to Laboratory Animals). - : SAGE Publications. - 0261-1929. ; 41:1, s. 49-64
  • Tidskriftsartikel (refereegranskat)abstract
    • QSAR regression models of the toxicity of triazoles and benzotriazoles ([B] TAZs) to an alga (Pseudokirchneriella subcapitata), Daphnia magna and a fish (Onchorhynchus mykiss), were developed by five partners in the FP7-EU Project, CADASTER. The models were developed by different methods - Ordinary Least Squares (OLS), Partial Least Squares (PLS), Bayesian regularised regression and Associative Neural Network (ASNN) - by using various molecular descriptors (DRAGON, PaDEL-Descriptor and QSPR-THESAURUS web). In addition, different procedures were used for variable selection, validation and applicability domain inspection. The predictions of the models developed, as well as those obtained in a consensus approach by averaging the data predicted from each model, were compared with the results of experimental tests that were performed by two CADASTER partners. The individual and consensus models were able to correctly predict the toxicity classes of the chemicals tested in the CADASTER project, confirming the utility of the QSAR approach. The models were also used for the prediction of aquatic toxicity of over 300 (B)TAZs, many of which are included in the REACH pre-registration list, and were without experimental data. This highlights the importance of QSAR models for the screening and prioritisation of untested chemicals, in order to reduce and focus experimental testing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 68
Typ av publikation
tidskriftsartikel (41)
rapport (8)
konferensbidrag (8)
annan publikation (5)
bokkapitel (3)
doktorsavhandling (1)
visa fler...
forskningsöversikt (1)
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (44)
övrigt vetenskapligt/konstnärligt (22)
populärvet., debatt m.m. (2)
Författare/redaktör
Sahlin, Ullrika (68)
Smith, Henrik G. (10)
Öberg, Tomas (9)
Clough, Yann (6)
Stjernman, Martin (6)
Papa, Ester (6)
visa fler...
Olsson, Ola (5)
Kovarich, Simona (5)
Iqbal, Muhammad Sarf ... (5)
Knaggård, Åsa (4)
Rundlöf, Maj (4)
Golsteijn, Laura (4)
Edsman, Lennart (3)
Lindström, Åke (3)
Rahmberg, Magnus (3)
Baey, Charlotte (3)
Peijnenburg, Willie (3)
Brandmaier, Stefan (3)
Huijbregts, Mark A. ... (3)
Olsson, Peter (2)
Pettersson, Lars B. (2)
Brady, Mark V. (2)
Lindström, Johan (2)
Sutherland, William ... (2)
Klatt, Björn (2)
Smith, Henrik (2)
Lehsten, Veiko (2)
Ekbom, Anders, 1963 (2)
Filipsson, Monika (2)
Slunge, Daniel, 1968 (2)
Amano, Tatsuya (2)
Boenisch, Nicolas (2)
Cheng, Samantha H. (2)
Christie, Alec P. (2)
Godfray, H. Charles ... (2)
Grainger, Matthew J. (2)
McLean, Angela R. (2)
Morgan, William H. (2)
Ockendon, Nancy (2)
White, Thomas B. (2)
Lindeskog, Mats (2)
Tyler, Torbjörn (2)
Gramatica, Paola (2)
Tetko, Igor (2)
Olin, Stefan (2)
Kolar, Boris (2)
Cassani, Stefano (2)
Durjava, Mojca Kos (2)
Grönholdt Palm, Juli ... (2)
Göthberg, Maria, 198 ... (2)
visa färre...
Lärosäte
Lunds universitet (50)
Linnéuniversitetet (21)
Sveriges Lantbruksuniversitet (8)
Göteborgs universitet (3)
Chalmers tekniska högskola (3)
Kungliga Tekniska Högskolan (1)
visa fler...
Stockholms universitet (1)
Linköpings universitet (1)
Naturvårdsverket (1)
Högskolan i Skövde (1)
Karolinska Institutet (1)
Naturhistoriska riksmuseet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (60)
Svenska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (57)
Lantbruksvetenskap (9)
Samhällsvetenskap (8)
Medicin och hälsovetenskap (3)
Humaniora (3)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy