SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saint Christopher P.) "

Sökning: WFRF:(Saint Christopher P.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wain, Louise V., et al. (författare)
  • Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney
  • 2017
  • Ingår i: Hypertension. - 0194-911X .- 1524-4563. ; 70:3, s. e4-e19
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA. Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.
  •  
2.
  • Horne, Gregory P., et al. (författare)
  • DEHBA (di-2-ethylhexylbutyramide) gamma radiolysis under spent nuclear fuel solvent extraction process conditions
  • 2020
  • Ingår i: Radiation Physics and Chemistry. - : Elsevier. - 0969-806X .- 1879-0895. ; 170
  • Tidskriftsartikel (refereegranskat)abstract
    • Di-2-ethylhexylbutyramide (DEHBA) has been proposed as part of a hydro-reprocessing solvent extraction system for the co-extraction of uranium and plutonium from spent nuclear fuel. However, there remains a lack of quantitative understanding of the impact of chemical environment on the radiation chemistry of DEHBA, especially under conditions expected in real-world solvent extraction processes. Therefore, we have undertaken a systematic investigation into the radiolytic degradation of DEHBA in n-dodecane under fully aerated and biphasic conditions. DEHBA integrity and degradation product formation were measured for both extraction (in contact with 4.0 M HNO3(aq)) and stripping (in contact with 0.1 M HNO3(aq)) formulations. At the lower acidity the rate of DEHBA/n-dodecane degradation was slow (G = -0.26 +/- 0.02 mu M J(-1)) whereas at the higher acidity this degradation was about 35% faster (G= -0.35 +/- 0.02 mu M J(-1)). Both values were much less than analogous measurements under deaerated conditions. Under continuously aerated conditions, FTIR and ESI-MS measurements identified the two major degradation products, bis-2-ethylhexylamine (b2EHA) and N-(2-ethylhexyl)butyramide (MEHBA), as well as the presence of additional oxidized product species. Solvent system performance was also investigated using uranium extraction and strip distribution ratio measurements. These studies showed that there was only minimal change in uranium extraction and stripping performance with absorbed gamma dose.
  •  
3.
  • Horne, Gregory P., et al. (författare)
  • Effect of chemical environment on the radiation chemistry of N,N-di-(2-ethylhexyl)butyramide (DEHBA) and plutonium retention
  • 2019
  • Ingår i: Dalton Transactions. - : ROYAL SOC CHEMISTRY. - 1477-9226 .- 1477-9234. ; 48:38, s. 14450-14460
  • Tidskriftsartikel (refereegranskat)abstract
    • N,N-di-(2-ethylhexyl)butyramide (DEHBA) has been proposed as part of a hydro-reprocessing solvent extraction system for the co-extraction of uranium and plutonium from spent nuclear fuel, owing to its selectivity for hexavalent uranium and tetravalent plutonium. However, there is a critical lack of quantitative understanding regarding the impact of chemical environment on the radiation chemistry of DEHBA, and how this would affect process performance. Here we present a systematic investigation into the radiolytic degradation of DEHBA in a range of n-dodecane solvent system formulations, where we subject DEHBA to gamma irradiation, measure reaction kinetics, ligand integrity, degradation product formation, and investigate solvent system performance through uranium and plutonium extraction and strip distribution ratios. The rate of DEHBA degradation in n-dodecane was found to be slow (G = -0.31 +/- 0.02 mu mol J(-1)) but enhanced upon contact with the oxidizing conditions of the investigated solvent systems (organic-only, or in contact with either 0.1 or 3.0 M aqueous nitric acid). Two major degradation products were identified in the organic phase, bis-2-ethylhexylamine (b2EHA) and N-(2-ethylhexyl)butyramide (MEHBA), resulting from the cleavage of C-N bonds, and could account for the total loss of DEHBA up to similar to 300 kGy for organic-only conditions. Both b2EHA and MEHBA were also found to be susceptible to radiolytic degradation, having G-values of -0.12 +/- 0.01 and -0.08 +/- 0.01 mu mol J(-1), respectively. Solvent extraction studies showed: (i) negligible change in uranium extraction and stripping with increasing absorbed dose; and (ii) plutonium extraction and retention exhibits complex dependencies on absorbed dose and chemical environment. Organic-only conditions afforded enhanced plutonium extraction and retention attributed to b2EHA, while acid contacts inhibited this effect and promoted significant plutonium retention for the highest acidity. Overall it has been demonstrated that chemical environment during irradiation has a significant influence on the extent of DEHBA degradation and plutonium retention.
  •  
4.
  • Ho, Lionel, et al. (författare)
  • Assessing granular media filtration for the removal of chemical contaminants from wastewater
  • 2011
  • Ingår i: Water Research. - : Elsevier Ltd. - 0043-1354 .- 1879-2448. ; 45:11, s. 3461-3472
  • Tidskriftsartikel (refereegranskat)abstract
    • Granular media filtration was evaluated for the removal of a suite of chemical contaminants that can be found in wastewater. Laboratory- and pilot-scale sand and granular activated carbon (GAC) filters were trialled for their ability to remove atrazine, estrone (E1), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR) and N-nitrosodiethylamine (NDEA). In general, sand filtration was ineffective in removing the contaminants from a tertiary treated wastewater, with the exception of E1 and EE2, where efficient removals were observed after approximately 150 d. Batch degradation experiments confirmed that the removal of E1 was through biological activity, with a pseudo-first-order degradation rate constant of 7.4 × 10-3 h-1. GAC filtration was initially able to effectively remove all contaminants; although removals decreased over time due to competition with other organics present in the water. The only exception was atrazine where removal remained consistently high throughout the experiment. Previously unreported differences were observed in the adsorption of the three nitrosamines, with the ease of removal following the trend, NDEA \textgreater NMOR \textgreater NDMA, consistent with their hydrophobic character. In most instances the removals from the pilot-scale filters were generally in agreement with the laboratory-scale filter, suggesting that there is potential in using laboratory-scale filters as monitoring tools to evaluate the performance of pilot- and possibly full-scale sand and GAC filters at wastewater treatment plants. © 2011 Elsevier Ltd.
  •  
5.
  • Ho, Lionel, et al. (författare)
  • Removal of cyanobacterial metabolites through wastewater treatment plant filters
  • 2012
  • Ingår i: Water Science and Technology. - : IWA Publishing. - 0273-1223 .- 1996-9732. ; 65:7, s. 1244-1251
  • Tidskriftsartikel (refereegranskat)abstract
    • Wastewaters have the potential to proliferate excessive numbers of cyanobacteria due to high nutrient levels. This could translate to the production of metabolites, such as the saxitoxins, geosmin and 2-methylisoborneol (MIB), which can impair the quality of wastewater destined for re-use. Biological sand filtration was assessed for its ability to remove these metabolites from a wastewater. Results indicated that the sand filter was incapable of effectively removing the saxitoxins and in some instances, the effluent of the sand filter displayed greater toxicity than the influent. Conversely, the sand filter was able to effectively remove geosmin and MIB, with removal attributed to biodegradation. Granular activated carbon was employed as an alternative filter medium to remove the saxitoxins. Results showed similar removals to previous drinking water studies, where efficient removals were initially observed, followed by a decrease in the removal; a consequence of the presence of competing organics which reduced adsorption of the saxitoxins.
  •  
6.
  • Watts, Eleanor L., et al. (författare)
  • Observational and genetic associations between cardiorespiratory fitness and cancer : a UK Biobank and international consortia study
  • 2024
  • Ingår i: British Journal of Cancer. - : Springer Nature. - 0007-0920 .- 1532-1827. ; 130, s. 114-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The association of fitness with cancer risk is not clear.Methods: We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of lung, colorectal, endometrial, breast, and prostate cancer in a subset of UK Biobank participants who completed a submaximal fitness test in 2009-12 (N = 72,572). We also investigated relationships using two-sample Mendelian randomisation (MR), odds ratios (ORs) were estimated using the inverse-variance weighted method.Results: After a median of 11 years of follow-up, 4290 cancers of interest were diagnosed. A 3.5 ml O2⋅min−1⋅kg−1 total-body mass increase in fitness (equivalent to 1 metabolic equivalent of task (MET), approximately 0.5 standard deviation (SD)) was associated with lower risks of endometrial (HR = 0.81, 95% CI: 0.73–0.89), colorectal (0.94, 0.90–0.99), and breast cancer (0.96, 0.92–0.99). In MR analyses, a 0.5 SD increase in genetically predicted O2⋅min−1⋅kg−1 fat-free mass was associated with a lower risk of breast cancer (OR = 0.92, 95% CI: 0.86–0.98). After adjusting for adiposity, both the observational and genetic associations were attenuated.Discussion: Higher fitness levels may reduce risks of endometrial, colorectal, and breast cancer, though relationships with adiposity are complex and may mediate these relationships. Increasing fitness, including via changes in body composition, may be an effective strategy for cancer prevention.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy