SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salis R.) "

Sökning: WFRF:(Salis R.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sagova-Mareckova, M., et al. (författare)
  • Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring
  • 2021
  • Ingår i: Water Research. - : Elsevier. - 0043-1354 .- 1879-2448. ; 191
  • Forskningsöversikt (refereegranskat)abstract
    • Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems. (c) 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ )
  •  
2.
  •  
3.
  • Piggott, Jeremy J., et al. (författare)
  • Climate warming and agricultural stressors interact to determine stream periphyton community composition
  • 2015
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 21:1, s. 206-222
  • Tidskriftsartikel (refereegranskat)abstract
    • Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of multiple stressors in a warming climate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy