SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salles Fabrice) "

Sökning: WFRF:(Salles Fabrice)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jardin, Fabrice, et al. (författare)
  • Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma.
  • 2016
  • Ingår i: American Journal of Hematology. - : Wiley. - 0361-8609 .- 1096-8652. ; 91:9, s. 923-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary mediastinal B-cell lymphoma (PMBL) is an entity of B-cell lymphoma distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We investigated the prevalence, specificity, and clinical relevance of mutations of XPO1, which encodes a member of the karyopherin-β nuclear transporters, in a large cohort of PMBL. PMBL cases defined histologically or by gene expression profiling (GEP) were sequenced and the XPO1 mutational status was correlated to genetic and clinical characteristics. The XPO1 mutational status was also assessed in DLBCL, Hodgkin lymphoma (HL) and mediastinal gray-zone lymphoma (MGZL).The biological impact of the mutation on Selective Inhibitor of Nuclear Export (SINE) compounds (KPT-185/330) sensitivity was investigated in vitro. XPO1 mutations were present in 28/117 (24%) PMBL cases and in 5/19 (26%) HL cases but absent/rare in MGZL (0/20) or DLBCL (3/197). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in GEP-defined PMBL and was associated with shorter PFS. Age, International Prognostic Index and bulky mass were similar in XPO1 mutant and wild-type cases. KPT-185 induced a dose-dependent decrease in cell proliferation and increased cell-death in PMBL cell lines harboring wild type or XPO1 E571K mutant alleles. Experiments in transfected U2OS cells further confirmed that the XPO1 E571K mutation does not have a drastic impact on KPT-330 binding. To conclude the XPO1 E571K mutation represents a genetic hallmark of the PMBL subtype and serves as a new relevant PMBL biomarker. SINE compounds appear active for both mutated and wild-type protein. Am. J. Hematol. 91:923-930, 2016. © 2016 Wiley Periodicals, Inc.
  •  
2.
  • Le Pham, Phuong Nam, et al. (författare)
  • Potassium-ion batteries using KFSI/DME electrolytes: Implications of cation solvation on the K + -graphite (co-)intercalation mechanism
  • 2022
  • Ingår i: Energy Storage Materials. - : Elsevier BV. - 2405-8297. ; 45, s. 291-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently potassium-ion batteries have been proposed as a promising next generation battery technology owing to cost effectiveness and a wide range of electrode materials as well as electrolytes available. Potassium bis(fluorosulfonyl)imide (KFSI) in monoglyme (DME) is one potential electrolyte, wherein the K+ solvation heavily depends on the salt concentration and strongly affects the electrochemistry. Pure K+ intercalation occurs for highly concentrated electrolytes (HCEs), while co-intercalation is dominant for less concentrated electrolytes. The mechanisms are easily distinguished by their galvanostatic curves as well as by operando XRD. Here Raman spectroscopy coupled with computational chemistry is used to provide in-depth knowledge about the cation solvation for a wide concentration range, all the way up to 5 M KFSI in DME. Starting from pure DME experimental and computed Raman spectra provides a detailed conformational assignment enabling us to calculate the solvation number (SN) of K+ by DME as a function of salt concentration for all the electrolytes. For low to medium KFSI concentrations, the SN is approximately constant, ca. 2.7, and/as there is a surplus of DME solvent available, while for HCEs, with much less DME available, the SN is <2. This reduced SN results in a thermodynamically more favored desolvation at the graphite surface, leading to intercalation, as compared to the higher SN of conventional electrolytes leading to co-intercalation, as observed also by electrochemical cycling.
  •  
3.
  • Salcedo-Abraira, Pablo, et al. (författare)
  • High Proton Conductivity of a Bismuth Phosphonate Metal-Organic Framework with Unusual Topology
  • 2023
  • Ingår i: Chemistry of Materials. - 0897-4756 .- 1520-5002. ; 35:11, s. 4329-4337
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the interest in proton exchange membrane (PEM)technologies(fuel cells and electrolyzers) for energy applications, the low stabilityof the electrolyte materials under working conditions (i.e., humidityand temperature) is one of their major limitations. Metal-organicframeworks (MOFs) have recently emerged as promising electrolytesdue to their higher stability compared with the currently appliedorganic polymers, proton conductivity, and outstanding porosity. Here,a novel robust Bi phosphonate MOF (branded as IEF-7) was successfullysynthesized and fully characterized, exhibiting an unusual topologydue to the irregular coordination geometry of the bismuth cations.Furthermore, IEF-7 exhibited potential porosity, very high chemicaland thermal stability, and free -PO3H groups involvedin its ultrahigh proton conductivity, reaching 1.39 x 10(-2) S cm(-1) at 90 degrees C and 90% relativehumidity for, at least, 3 cycles. In order to improve the consolidationand shaping of the powder for testing its ion conductivity properties,a highly MOF-loaded composite (90 wt %) was prepared by adding a protonconductive sulfonated polysulfone binder. The proton conductivityof the resulting composite was in the same order of magnitude as thecompacted MOF powder, making this polymeric composite electrolytevery promising for PEM technologies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy