SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salman Jawad) "

Sökning: WFRF:(Salman Jawad)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ademuyiwa, Adesoji O., et al. (författare)
  • Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries
  • 2016
  • Ingår i: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 1:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation's Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries. Effective provision of emergency essential surgery should be a key priority for global child health agendas.
  •  
2.
  • Feigin, Valery L., et al. (författare)
  • Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2019
  • Ingår i: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 18:5, s. 459-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies.Funding: Bill & Melinda Gates Foundation.
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  •  
5.
  • Greite, Robert, et al. (författare)
  • Cell-Free Hemoglobin in Acute Kidney Injury after Lung Transplantation and Experimental Renal Ischemia/Reperfusion
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-free hemoglobin (CFH), a pro-oxidant and cytotoxic compound that is released in hemolysis, has been associated with nephrotoxicity. Lung transplantation (LuTx) is a clinical condition with a high incidence of acute kidney injury (AKI). In this study, we investigated the plasma levels of CFH and haptoglobin, a CFH-binding serum protein, in prospectively enrolled LuTx patients (n = 20) with and without AKI. LuTx patients with postoperative AKI had higher CFH plasma levels at the end of surgery compared with no-AKI patients, and CFH correlated with serum creatinine at 48 h. Moreover, CFH levels inversely correlated with haptoglobin levels, which were significantly reduced at the end of surgery in LuTx patients with AKI. Because multiple other factors can contribute to AKI development in the complex clinical setting of LuTx, we next investigated the role of exogenous CFH administration in a mouse model of mild bilateral renal ischemia reperfusion injury (IRI). Exogenous administration of CFH after reperfusion caused overt AKI with creatinine increase, tubular injury, and enhanced markers of renal inflammation compared with vehicle-treated animals. In conclusion, CFH is a possible factor contributing to postoperative AKI after LuTx and promotes AKI in an experimental model of mild transient renal ischemia. Targeting CFH might be a therapeutic option to prevent AKI after LuTx.
  •  
6.
  • Greite, Robert, et al. (författare)
  • Free heme and hemopexin in acute kidney injury after cardiopulmonary bypass and transient renal ischemia
  • 2023
  • Ingår i: Clinical and Translational Science. - 1752-8054. ; 16:12, s. 2729-2743
  • Tidskriftsartikel (refereegranskat)abstract
    • Free heme is released from hemoproteins during hemolysis or ischemia reperfusion injury and can be pro-inflammatory. Most studies on nephrotoxicity of hemolysis-derived proteins focus on free hemoglobin (fHb) with heme as a prosthetic group. Measurement of heme in its free, non-protein bound, form is challenging and not commonly used in clinical routine diagnostics. In contrast to fHb, the role of free heme in acute kidney injury (AKI) after cardiopulmonary bypass (CPB) surgery is unknown. Using an apo-horseradish peroxidase-based assay, we identified free heme during CPB surgery as predictor of AKI in patients undergoing cardiac valve replacement (n = 37). Free heme levels during CPB surgery correlated with depletion of hemopexin (Hx), a heme scavenger-protein. In mice, the impact of high levels of circulating free heme on the development of AKI following transient renal ischemia and the therapeutic potential of Hx were investigated. C57BL/6 mice were subjected to bilateral renal ischemia/reperfusion injury for 15 min which did not cause AKI. However, additional administration of free heme in this model promoted overt AKI with reduced renal function, increased renal inflammation, and reduced renal perfusion on functional magnetic resonance imaging. Hx treatment attenuated AKI. Free heme administration to sham operated control mice did not cause AKI. In conclusion, free heme is a predictor of AKI in CPB surgery patients and promotes AKI in transient renal ischemia. Depletion of Hx in CPB surgery patients and attenuation of AKI by Hx in the in vivo model encourage further research on Hx therapy in patients with increased free heme levels during CPB surgery.
  •  
7.
  • Iqbal, Muhammad, et al. (författare)
  • Symbol error rate minimization using deep learning approaches for short-reach optical communication networks
  • 2024
  • Ingår i: Frontiers in Physics. - : Frontiers Media S.A.. - 2296-424X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Short-reach optical communication networks have various applications in areas where high-speed connectivity is needed, for example, inter- and intra-data center links, optical access networks, and indoor and in-building communication systems. Machine learning (ML) approaches provide a key solution for numerous challenging situations due to their robust decision-making, problem-solving, and pattern-recognition abilities. In this work, our focus is on utilizing deep learning models to minimize symbol error rates in short-reach optical communication setups. Various channel impairments, such as nonlinearity, chromatic dispersion (CD), and attenuation, are accurately modeled. Initially, we address the challenge of modeling a nonlinear channel. Consequently, we harness a deep learning model called autoencoders (AEs) to facilitate communication over nonlinear channels. Furthermore, we investigate how the inclusion of a nonlinear channel within an autoencoder influences the received constellation as the optical fiber length increases. Another facet of our work involves the deployment of a deep neural network-based receiver utilizing a channel influenced by chromatic dispersion. By gradually extending the optical length, we explore its impact on the received constellation and, consequently, the symbol error rate. Finally, we incorporate the split-step Fourier method (SSFM) to emulate the combined effects of nonlinearities, chromatic dispersion, and attenuation in the optical channel. This is accomplished through a neural network-based receiver. The outcome of this work is an evaluation and reduction of the symbol error rate as the length of the optical fiber is varied.
  •  
8.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
9.
  • Mirza, Jawad, et al. (författare)
  • Modeling and analysis of single-mode widely tunable all-fiber Ho-doped CW master oscillator power amplifier system
  • 2024
  • Ingår i: Physica Scripta. - : Institute of Physics Publishing (IOPP). - 0031-8949 .- 1402-4896. ; 99:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the design of an all-fiber single-mode polarization maintaining widely tunable Ho-doped master oscillator power amplifier (MOPA) system operating in the wavelength range of 2005-2135 nm based on a pre-amplifier and two power amplification stages. The single clad Ho-doped active fibers in the ring cavity based master oscillator, pre-amplifier, and power amplifiers are pumped using 1950 nm semiconductor laser diode pump sources. The amplification of the MOPA system is investigated over the entire spectral range of 2005-2135 nm. The highest output power achieved by the continuous wave (CW) Ho-doped MOPA system is 43 W at a wavelength of 2028.6 nm using pump power of 20 W with power conversion efficiency (PCE) of 90% for second power amplifier while the total pump power of Ho-doped MOPA system is 45 W. Optical bandpass filters (OBPFs) are employed between different stages of MOPA system to enable amplification over the wider spectral range of 2005-2135 nm by suppressing the amplified spontaneous emission (ASE). Not using OBPFs results in amplification that is limited to the spectral range of 2045-2130 nm. Therefore, a penalty of 45 nm can be avoided at the expense of using the OBPFs between different stages of MOPA system. This flexible MOPA system can be used in multiple applications, especially for space-borne high power transmitters operating in atmospheric transmission windows.
  •  
10.
  • Mirza, Jawad, et al. (författare)
  • Pair induced quenching in high concentration Holmium-doped fiber amplifiers
  • 2024
  • Ingår i: Physica Scripta. - : Institute of Physics Publishing (IOPP). - 0031-8949 .- 1402-4896. ; 99:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The spectrum required for future optical communication systems is being extended towards the C-, L- and U-bands, resulting in a significant interest in the spectral region around 2 μm wavelength. Since Holmium doped fiber amplifiers (HDFAs) provide amplification in this spectral region, they have become a focus of researchers working on doped fiber amplifiers. A major factor resulting in the performance degradation of HDFAs is the inhomogeneous energy transfer within Ho3+ ion-pairs in high-concentration Holmium-doped fibers (HDFs), an effect generally known as pair-induced quenching (PIQ). In this paper, we study the luminal and temporal dynamics of pulses of different repetition rates at 2.05 μm in high-concentration HDFs considering the effects of ion-pairs. Input pulses having repetition rates of 25 GHz and 500 kHz are generated using wavelength tunable actively mode-locked Holmium-doped fiber laser (AML-HDFL) based on a single ring cavity and bidirectional pumping. The characteristics of the pulses propagating through high-concentration HDF are analyzed based on different metrics such as average power, peak power, pulse energy, full-width at half maximum (FWHM), and time delay without and with ion-pairs for values of fraction of ion-pairs k = 0 and k = 10%, respectively. The results obtained at optimized length of HDF show that ion-pairs significantly degrade the average power, peak power, and energy of the output pulses for both of the repetition rates. For both k = 0 and k = 10%, the FWHM and shape of the output pulses remain same in the presence of the ion-pairs while, time delay of 4 ps and 19 ns is observed in the output pulses at repetition rates of 25 GHz and 500 kHz, respectively. The effects of increasing the pump and signal power on the average power and energy of the output pulses for k = 0 and k = 10% are also discussed for both repetition rates. This analysis provides important guidelines for designers of 2 μm fiber lasers and amplifiers based on high-concentration HDFs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy