SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Salva A) "

Search: WFRF:(Salva A)

  • Result 1-10 of 32
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G., et al. (author)
  • 2012
  • swepub:Mat__t (peer-reviewed)
  •  
2.
  • Aad, G., et al. (author)
  • 2011
  • swepub:Mat__t (peer-reviewed)
  •  
3.
  • Vermunt, L., et al. (author)
  • Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype
  • 2019
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:7, s. 888-898
  • Journal article (peer-reviewed)abstract
    • Introduction: We estimated the age-specific duration of the preclinical, prodromal, and dementia stages of Alzheimer's disease (AD) and the influence of sex, setting, apolipoprotein E (APOE) genotype, and cerebrospinal fluid tau on disease duration. Methods: We performed multistate modeling in a combined sample of 6 cohorts (n = 3268) with death as the end stage and estimated the preclinical, prodromal, and dementia stage duration. Results: The overall AD duration varied between 24 years (age 60) and 15 years (age 80). For individuals presenting with preclinical AD, age 70, the estimated preclinical AD duration was 10 years, prodromal AD 4 years, and dementia 6 years. Male sex, clinical setting, APOE epsilon 4 allele carriership, and abnormal cerebrospinal fluid tau were associated with a shorter duration, and these effects depended on disease stage. Discussion: Estimates of AD disease duration become more accurate if age, sex, setting, APOE, and cerebrospinal fluid tau are taken into account. This will be relevant for clinical practice and trial design. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
4.
  •  
5.
  •  
6.
  • Kondori, Nahid, 1967, et al. (author)
  • Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood
  • 2021
  • In: Frontiers in Cellular and Infection Microbiology. - : Frontiers Media SA. - 2235-2988. ; 11
  • Journal article (peer-reviewed)abstract
    • Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called "proteotyping". To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished.
  •  
7.
  • Salvà-Serra, Francisco, 1989, et al. (author)
  • Complete genome sequences of Streptococcus pyogenes type strain reveal 100%-match between PacBio-solo and Illumina-Oxford Nanopore hybrid assemblies
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • We present the first complete, closed genome sequences of Streptococcus pyogenes strains NCTC 8198(T) and CCUG 4207(T), the type strain of the type species of the genus Streptococcus and an important human pathogen that causes a wide range of infectious diseases. S. pyogenes NCTC 8198(T) and CCUG 4207(T) are derived from deposit of the same strain at two different culture collections. NCTC 8198(T) was sequenced, using a PacBio platform; the genome sequence was assembled de novo, using HGAP. CCUG 4207(T) was sequenced and a de novo hybrid assembly was generated, using SPAdes, combining Illumina and Oxford Nanopore sequence reads. Both strategies yielded closed genome sequences of 1,914,862 bp, identical in length and sequence identity. Combining short-read Illumina and long-read Oxford Nanopore sequence data circumvented the expected error rate of the nanopore sequencing technology, producing a genome sequence indistinguishable to the one determined with PacBio. Sequence analyses revealed five prophage regions, a CRISPR-Cas system, numerous virulence factors and no relevant antibiotic resistance genes. These two complete genome sequences of the type strain of S. pyogenes will effectively serve as valuable taxonomic and genomic references for infectious disease diagnostics, as well as references for future studies and applications within the genus Streptococcus.
  •  
8.
  •  
9.
  • Cumsille, A., et al. (author)
  • Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution
  • 2023
  • In: Bmc Genomics. - 1471-2164. ; 24:1
  • Journal article (peer-reviewed)abstract
    • Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view