SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Samal Shailesh Kumar) "

Sökning: WFRF:(Samal Shailesh Kumar)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Verma, Suresh K., et al. (författare)
  • The posterity of Zebrafish in paradigm of in vivo molecular toxicological profiling
  • 2024
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 171
  • Forskningsöversikt (refereegranskat)abstract
    • The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.
  •  
2.
  • Ayreen, Zobia, et al. (författare)
  • Perilous paradigm of graphene oxide and its derivatives in biomedical applications : Insight to immunocompatibility
  • 2024
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 176
  • Forskningsöversikt (refereegranskat)abstract
    • With advancements in nanotechnology and innovative materials, Graphene Oxide nanoparticles (GONP) have attracted lots of attention among the diverse types of nanomaterials owing to their distinctive physicochemical characteristics. However, the usage at scientific and industrial level has also raised concern to their toxicological interaction with biological system. Understanding these interactions is crucial for developing guidelines and recommendations for applications of GONP in various sectors, like biomedicine and environmental technologies. This review offers crucial insights and an in-depth analysis to the biological processes associated with GONP immunotoxicity with multiple cell lines including human whole blood cultures, dendritic cells, macrophages, and multiple cancer cell lines. The complicated interactions between graphene oxide nanoparticles and the immune system, are highlighted in this work, which reveals a range of immunotoxic consequences like inflammation, immunosuppression, immunostimulation, hypersensitivity, autoimmunity, and cellular malfunction. Moreover, the immunotoxic effects are also highlighted with respect to in vivo models like mice and zebrafish, insighting GO Nanoparticles' cytotoxicity. The study provides invaluable review for researchers, policymakers, and industrialist to understand and exploit the beneficial applications of GONP with a controlled measure to human health and the environment.
  •  
3.
  • Husain, Shaheen, et al. (författare)
  • Emerging Trends in Advanced Translational Applications of Silver Nanoparticles : A Progressing Dawn of Nanotechnology
  • 2023
  • Ingår i: Journal of Functional Biomaterials. - : MDPI. - 2079-4983. ; 14:1
  • Forskningsöversikt (refereegranskat)abstract
    • Nanoscience has emerged as a fascinating field of science, with its implementation in multiple applications in the form of nanotechnology. Nanotechnology has recently been more impactful in diverse sectors such as the pharmaceutical industry, agriculture sector, and food market. The peculiar properties which make nanoparticles as an asset are their large surface area and their size, which ranges between 1 and 100 nanometers (nm). Various technologies, such as chemical and biological processes, are being used to synthesize nanoparticles. The green chemistry route has become extremely popular due to its use in the synthesis of nanoparticles. Nanomaterials are versatile and impactful in different day to day applications, resulting in their increased utilization and distribution in human cells, tissues, and organs. Owing to the deployment of nanoparticles at a high demand, the need to produce nanoparticles has raised concerns regarding environmentally friendly processes. These processes are meant to produce nanomaterials with improved physiochemical properties that can have significant uses in the fields of medicine, physics, and biochemistry. Among a plethora of nanomaterials, silver nanoparticles have emerged as the most investigated and used nanoparticle. Silver nanoparticles (AgNPs) have become vital entities of study due to their distinctive properties which the scientific society aims to investigate the uses of. The current review addresses the modern expansion of AgNP synthesis, characterization, and mechanism, as well as global applications of AgNPs and their limitations.
  •  
4.
  • Samal, Shailesh Kumar, et al. (författare)
  • Antibodies Against Phosphorylcholine Among 60-Year-Olds : Clinical Role and Simulated Interactions
  • 2022
  • Ingår i: Frontiers in Cardiovascular Medicine. - : Frontiers Media S.A.. - 2297-055X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • AimsAntibodies against phosphorylcholine (anti-PC) are implicated as protection markers in atherosclerosis, cardiovascular disease (CVD), and other chronic inflammatory conditions. Mostly, these studies have been focused on IgM. In this study, we determined IgG, IgG1, and IgG2 anti-PC among 60-year-olds. MethodsBased on a 7-year follow-up of 60-year-olds (2,039 men and 2,193 women) from Stockholm County, we performed a nested case-control study of 209 incident CVD cases with 620 age- and sex-matched controls. Anti-PC was determined using ELISA. We predicted the binding affinity of PC with our fully human, in-house-produced IgG1 anti-PC clones (i.e., A01, D05, and E01) using the molecular docking and molecular dynamics simulation approach, to retrieve information regarding binding properties to PC. ResultsAfter adjustment for confounders, IgG and IgG2 anti-PC showed some significant associations, but IgG1 anti-PC was much stronger as a protection marker. IgG1 anti-PC was associated with an increased risk of CVD below 33rd, 25th, and 10th percentile and of stroke below 33rd and 25th, and of myocardial infarction (MI) below 10th percentile. Among men, a strong association with stroke was determined below the 33rd percentile [HR 9.20, CI (2.22-38.12); p = 0.0022]. D05 clone has higher binding affinity followed by E01 and A01 using molecular docking and further have been confirmed during the course of 100 ns simulation. The stability of the D05 clone with PC was substantially higher. ConclusionIgG1 anti-PC was a stronger protection marker than IgG anti-PC and IgG2 anti-PC and also separately for men. The molecular modeling approach helps in identifying the intrinsic properties of anti-PC clones and atomistic interactions with PC.
  •  
5.
  • Simnani, Faizan Zarreen, et al. (författare)
  • Nanocarrier vaccine therapeutics for global infectious and chronic diseases
  • 2023
  • Ingår i: Materials Today. - : Elsevier BV. - 1369-7021 .- 1873-4103. ; 66, s. 371-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunization has the potential to become a viable weapon for the upcoming pandemic and save millions of lives, while also dramatically lowering the high mortality rate brought on by a number of infectious and chronic illnesses. Despite the success of some vaccinations for infectious illnesses, obstacles remain in avoiding and creating fully protective vaccines. Current COVID-19 pandemic highlights need for vaccination platform improvements. Nanomaterials have been created as a possible nanocarrier to elicit a robust immune response against important global morbidity and mortality drivers by encapsulating targeted antigen and functionalizing nanoparticles with particular molecules. In addition to their application in cancer immunotherapy, nanocarriers are currently being included into the development of vaccines against human immunodeficiency virus (HIV), malaria, TB, and influenza. In order to evaluate conventional and next-generation vaccination platforms, this study focuses on the COVID-19 and cancer vaccine as well as the passage and interaction of nanoparticles with immune cells in the lymph node. It also draws attention to the gaps in current and future HIV, TB, malaria, and influenza vaccinations, as well as nanovaccines. The importance of the dose-dependent vaccine in inducing and maintaining neutralizing antibodies after immunization has been discussed in more detail.
  •  
6.
  • Samal, Shailesh Kumar (författare)
  • Immune mechanisms and potential immunological treatment in atherosclerosis
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Our immune system is an important and central part of the defence mechanisms of our body. It carries out various important functions such as protecting us from invading microorganisms, removing dead cells, and producing antibodies for future defence. For this, proper synchronization between the innate and adaptive immunity is required. Our innate immune system acts as the first line of defence by eliminating non-specifically various pathogens and by activating antigen-presenting cells (APCs) that inform B-cells and T-cells of the adaptive immune system. B-cells can exhibit more specific actions against pathogens by an intricately regulated production of antibodies directed against antigens expressed by the pathogens. T-cells can produce cytokines and chemokines to alarm the complete immune system recruiting immune cells such as natural killer cells, mast cells and neutrophils. The immune system can also produce antibodies against self-antigens (autoantibodies). Autoantibodies can have pathogenic effects that cause autoimmune diseases such as Systemic Lupus Erythematosis. Interestingly, it has been shown recently that autoantibodies can also have protective effects alleviating diseases such as lupus nephritis and atherosclerosis. This thesis focuses specifically on homeostatic functions of the human autoantibodies anti-phoshorylcholine (anti-PC) and anti-malondialdehyde (anti-MDA) and their prevalence in cardiovascular disease (CVD) and chronic kidney disease (CKD). 1. Study I: Investigates the role of anti-PC and anti-MDA antibodies in patients undergoing hemodialysis and explores the associations with all-cause mortality in both males and females, also their relation to inflammation. 2. Study II: Evaluates the potential of natural immunization in hibernating bears, tigers, and polar bears with respect to the levels of anti-PC and anti-MDA antibodies. 3. Study III: Evaluates the role of antibodies against anti-PC antibodies among 60-Year-Olds with its clinical role and simulated interactions. 4. Study IV: Investigates the role of anti-PC antibody levels in Covid-19 patients and also investigates the interaction of spike protein with phosphorylcholine by using an in silico approach.
  •  
7.
  • Samal, Shailesh Kumar, et al. (författare)
  • Potential natural immunization against atherosclerosis in hibernating bears
  • 2021
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Brown bears (Ursus arctos) hibernate for 5-6 months during winter, but despite kidney insufficiency, dyslipidemia and inactivity they do not seem to develop atherosclerosis or cardiovascular disease (CVD). IgM antibodies against phosphorylcholine (anti-PC) and malondialdehyde (anti-MDA) are associated with less atherosclerosis, CVD and mortality in uremia in humans and have anti-inflammatory and other potentially protective properties. PC but not MDA is exposed on different types of microorganisms. We determine anti-PC and anti-MDA in brown bears in summer and winter. Paired serum samples from 12 free ranging Swedish brown bears were collected during hibernation in winter and during active state in summer and analyzed for IgM, IgG, IgG1/2 and IgA anti-PC and anti-MDA by enzyme linked immunosorbent assay (ELISA). When determined as arbitrary units (median set at 100 for summer samples), significantly raised levels were observed in winter for anti-PC subclasses and isotypes, and for IgA anti-PC the difference was striking; 100 IQR (85.9-107.9) vs 782.3, IQR (422.8-1586.0; p < 0.001). In contrast, subclasses and isotypes of anti-MDA were significantly lower in winter except IgA anti-MDA, which was not detectable. Anti-PCs are significantly raised during hibernation in brown bears; especially IgA anti-PC was strikingly high. In contrast, anti-MDA titers was decreased during hibernation. Our observation may represent natural immunization with microorganisms during a vulnerable period and could have therapeutic implications for prevention of atherosclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy