SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Samara C) "

Sökning: WFRF:(Samara C)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Aran, A., et al. (författare)
  • Evidence for local particle acceleration in the first recurrent galactic cosmic ray depression observed by Solar Orbiter : The ion event on 19 June 2020
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In mid-June 2020, the Solar Orbiter (SolO) mission reached its first perihelion at 0.51 au and started its cruise phase, with most of the in situ instruments operating continuously.Aims. We present the in situ particle measurements of the first proton event observed after the first perihelion obtained by the Energetic Particle Detector (EPD) suite on board SolO. The potential solar and interplanetary (IP) sources of these particles are investigated.Methods. Ion observations from similar to 20 keV to similar to 1 MeV are combined with available solar wind data from the Radio and Plasma Waves (RPW) instrument and magnetic field data from the magnetometer on board SolO to evaluate the energetic particle transport conditions and infer the possible acceleration mechanisms through which particles gain energy. We compare > 17-20 MeV ion count rate measurements for two solar rotations, along with the solar wind plasma data available from the Solar Wind Analyser (SWA) and RPW instruments, in order to infer the origin of the observed galactic cosmic ray (GCR) depressions.Results. The lack of an observed electron event and of velocity dispersion at various low-energy ion channels and the observed IP structure indicate a local IP source for the low-energy particles. From the analysis of the anisotropy of particle intensities, we conclude that the low-energy ions were most likely accelerated via a local second-order Fermi process. The observed GCR decrease on 19 June, together with the 51.8-1034.0 keV nuc(-1) ion enhancement, was due to a solar wind stream interaction region (SIR). The observation of a similar GCR decrease in the next solar rotation favours this interpretation and constitutes the first observation of a recurrent GCR decrease by SolO. The analysis of the recurrence times of this SIR suggests that it is the same SIR responsible for the He-4 events previously measured in April and May. Finally, we point out that an IP structure more complex than a common SIR cannot be discarded, mainly due to the lack of solar wind temperature measurements and the lack of a higher cadence of solar wind velocity observations.
  •  
4.
  • Mandt, K. E., et al. (författare)
  • RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S9-S22
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the primary objectives of the Rosetta Plasma Consortium, a suite of five plasma instruments on-board the Rosetta spacecraft, is to observe the formation and evolution of plasma interaction regions at the comet 67P/Churyumov-Gerasimenko (67P/CG). Observations made between 2015 April and 2016 February show that solar wind-cometary plasma interaction boundaries and regions formed around 2015 mid-April and lasted through early 2016 January. At least two regions were observed, separated by an ion-neutral collisionopause boundary. The inner region was located on the nucleus side of the boundary and was characterized by low-energy water-group ions, reduced magnetic field pileup and enhanced electron densities. The outer region was located outside of the boundary and was characterized by reduced electron densities, water-group ions that are accelerated to energies above 100 eV and enhanced magnetic field pileup compared to the inner region. The boundary discussed here is outside of the diamagnetic cavity and shows characteristics similar to observations made on-board the Giotto spacecraft in the ion pileup region at 1P/Halley. We find that the boundary is likely to be related to ion-neutral collisions and that its location is influenced by variability in the neutral density and the solar wind dynamic pressure.
  •  
5.
  •  
6.
  •  
7.
  • Wright, Gillian, et al. (författare)
  • The Mid-infrared Instrument for JWST and Its In-flight Performance
  • 2023
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 135:1046
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.
  •  
8.
  •  
9.
  • Sims, Mark R., et al. (författare)
  • Development status of life marker chip for ExoMars
  • 2012
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 72:1, s. 129-137
  • Tidskriftsartikel (refereegranskat)abstract
    • The Life Marker Chip (LMC) is one of the instruments being developed for possible flight on the 2018 ExoMars mission. The instrument uses solvents to extract organic compounds from samples of martian regolith and to transfer the extracts to dedicated detectors based around the use of antibodies. The scientific aims of the instrument are to detect organics in the form of biomarkers that might be associated with extinct life, extant life or abiotic sources of organics. The instrument relies on a novel surfactant-based solvent system and bespoke, commercial and research-developed antibodies against a number of distinct biomarkers or molecular types. The LMC comprises of a number of subsystems designed to accept up to four discrete samples of martian regolith or crushed rock, implement the solvent extraction, perform microfluidic-based multiplexed antibody-assays for biomarkers and other targets, optically detect the fluorescent output of the assays, control the internal instrument pressure and temperature, in addition to the associated instrument control electronics and software. The principle of operation, the design and the instrument development status as of December 2011 are reported here. The instrument principle can be extended to other configurations and missions as needed.
  •  
10.
  • Wright, G. S., et al. (författare)
  • The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build
  • 2015
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 127:953, s. 595-611
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) provides measurements over the wavelength range 5 to 28: 5 mu m. MIRI has, within a single "package," four key scientific functions: photometric imaging, coronagraphy, single-source low-spectral resolving power (R similar to 100) spectroscopy, and medium-resolving power (R similar to 1500 to 3500) integral field spectroscopy. An associated cooler system maintains MIRI at its operating temperature of
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy