SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sammons R. L.) "

Sökning: WFRF:(Sammons R. L.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, A., et al. (författare)
  • Development of tissue engineered ligaments with titanium spring reinforcement
  • 2016
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 6:100, s. 98536-98544
  • Tidskriftsartikel (refereegranskat)abstract
    • Tissue engineering offers a promising alternative to the use of autografts in the treatment of ligament injuries. However, current approaches using only biodegradable materials have insufficient mechanical strength for load bearing applications. In this research, hybrid bio-artificial ligaments were fabricated using a combination of a titanium alloy spring and a fibrin gel/fibroblast construct. The ends of the ligament prosthesis were incorporated into brushite cement anchors to allow fusion with the host bone. Cell attachment to the titanium spring was examined using scanning electron microscopy and fluorescent staining of cells. The unreinforced constructs were observed to fail at the anchor-ligament junction, while the titanium spring reinforcement was found to assist in even transmission of the load to the ligament, and hence to provide a means of load sharing between the biological construct and the spring. As a result, the reinforced construct failed primarily in the soft tissue region. The good load distribution features from the mechanical data was attributed to the good cellular level adhesion to, and alignment along the coiling of, the length of the spring reinforcement. Incorporation of a biocompatible reinforcement in conjunction with a tissue engineered construct gave improved load distribution, reducing stress concentrations, and significantly increased the ultimate strength at failure. The results suggest that the hybrid approach used here shows promise in developing improved therapies for connective tissue injuries. © The Royal Society of Chemistry 2016.
  •  
2.
  •  
3.
  • Vyas, N., et al. (författare)
  • The effect of standoff distance and surface roughness on biofilm disruption using cavitation
  • 2020
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Effective biofilm removal from surfaces in the mouth is a clinical challenge. Cavitation bubbles generated around a dental ultrasonic scaler are being investigated as a method to remove biofilms effectively. It is not known how parameters such as surface roughness and instrument distance from biofilm affect the removal. We grewStrepotococcus sanguinisbiofilms on coverslips and titanium discs with varying surface roughness (between 0.02-3.15 mu m). Experimental studies were carried out for the biofilm removal using high speed imaging and image analysis to calculate the area of biofilm removed at varying ultrasonic scaler standoff distances from the biofilm. We found that surface roughness up to 2 mu m does not adversely affect biofilm removal but a surface roughness of 3 mu m caused less biofilm removal. The standoff distance also has different effects depending on the surface roughness but overall a distance of 1 mm is just as effective as a distance of 0.5 mm. The results show significant biofilm removal due to an ultrasonic scaler tip operating for only 2s versus 15-60s in previous studies. The technique developed for high speed imaging and image analysis of biofilm removal can be used to investigate physical biofilm disruption from biomaterial surfaces in other fields.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy