SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sanchez Villanueva R) "

Sökning: WFRF:(Sanchez Villanueva R)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Abazov, V. M., et al. (författare)
  • B-s(0) lifetime measurement in the CP-odd decay channel B-s(0) -> J/Psi f(0)(980)
  • 2016
  • Ingår i: PHYSICAL REVIEW D. - 2470-0010. ; 94:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The lifetime of the B-s(0) meson is measured in the decay channel B-s(0) -> J/Psi pi(+)pi(-) with 880 <= M pi+pi- <= 1080 MeV/c(2), which is mainly a CP-odd state and dominated by the f(0)(980) resonance. In 10.4 fb(-1) of data collected with the D0 detector in Run II of the Tevatron, the lifetime of the B-s(0) meson is measured to be tau(B-s(0)) = 1.70 +/- 0.14(stat) +/- 0.05(syst) ps. Neglecting CP violation in B-s(0)/(B) over bar (0)(s) mixing, the measurement can be translated into the width of the heavy mass eigenstate of the B-s(0), Gamma(H) = 0.59 +/- 0.05(stat) +/- 0.02(syst) ps(-1).
  •  
5.
  •  
6.
  • Datry, T., et al. (författare)
  • A global analysis of terrestrial plant litter dynamics in non-perennial waterways
  • 2018
  • Ingår i: Nature Geoscience. - : Nature Publishing Group. - 1752-0894 .- 1752-0908. ; 11:7, s. 497-503
  • Tidskriftsartikel (refereegranskat)abstract
    • Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O2) consumption in standardized assays and estimated the potential short-term CO2 emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO2 emission upon litter rewetting contributes up to 10% of the daily CO2 emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.
  •  
7.
  • von Schiller, D., et al. (författare)
  • Sediment Respiration Pulses in Intermittent Rivers and Ephemeral Streams
  • 2019
  • Ingår i: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236 .- 1944-9224. ; 33:10, s. 1251-1263
  • Tidskriftsartikel (refereegranskat)abstract
    • Intermittent rivers and ephemeral streams (IRES) may represent over half the global stream network, but their contribution to respiration and carbon dioxide (CO2) emissions is largely undetermined. In particular, little is known about the variability and drivers of respiration in IRES sediments upon rewetting, which could result in large pulses of CO2. We present a global study examining sediments from 200 dry IRES reaches spanning multiple biomes. Results from standardized assays show that mean respiration increased 32-fold to 66-fold upon sediment rewetting. Structural equation modeling indicates that this response was driven by sediment texture and organic matter quantity and quality, which, in turn, were influenced by climate, land use, and riparian plant cover. Our estimates suggest that respiration pulses resulting from rewetting of IRES sediments could contribute significantly to annual CO2 emissions from the global stream network, with a single respiration pulse potentially increasing emission by 0.2-0.7%. As the spatial and temporal extent of IRES increases globally, our results highlight the importance of recognizing the influence of wetting-drying cycles on respiration and CO2 emissions in stream networks.
  •  
8.
  • Meech, K. J., et al. (författare)
  • EPOXI: Comet 103P/Hartley 2 Observations from a Worldwide Campaign
  • 2011
  • Ingår i: Astrophysical Journal Letters. - London : IOP. - 2041-8213 .- 2041-8205. ; 734:L1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ~16.4?hr. Starting in 2010 August the period changed from 16.6?hr to near 19?hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO 2 -driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.
  •  
9.
  • Gonzalez, E, et al. (författare)
  • An Increase of Plasma Advanced Oxidation Protein Products Levels Is Associated with Cardiovascular Risk in Incident Peritoneal Dialysis Patients: A Pilot Study
  • 2015
  • Ingår i: Oxidative medicine and cellular longevity. - : Hindawi Limited. - 1942-0994 .- 1942-0900. ; 2015, s. 219569-
  • Tidskriftsartikel (refereegranskat)abstract
    • Advanced oxidation protein products (AOPPs) are considered as markers and even mediators of the proinflammatory effect of oxidative stress in uremia. We hypothesized that an increase of oxidative stress associated with peritoneal dialysis (PD), estimated by the variation of plasma AOPPs over time, might be associated with cardiovascular (CV) risk and overall prognosis. In 48 PD patients, blood samples were collected on two occasions: the first one in the first six months after starting PD therapy and the second one, one year after. The plasma AOPPs level variation over the first year on PD was significantly associated with CV antecedents and also with CV prognosis. In those patients in whom the AOPPs levels increased more than 50% above the baseline value, a significant association with past and future CV disease was confirmed. These patients had 4.7 times greater risk of suffering later CV disease than those with a smaller increase, even after adjusting for previous CV history. Our data suggest that the increase of AOPPs plasma level over the first year on PD is conditioned by CV antecedents but also independently predicts CV prognosis. AOPPs plasma levels seem to represent the CV status of PD patients with sufficient sensitivity to identify those with a clearly sustained higher CV risk.
  •  
10.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy