SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sandstad J. S.) "

Sökning: WFRF:(Sandstad J. S.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Horn, S., et al. (författare)
  • Cobalt resources in Europe and the potential for new discoveries
  • 2021
  • Ingår i: Ore Geology Reviews. - : Elsevier. - 0169-1368 .- 1872-7360. ; 130
  • Tidskriftsartikel (refereegranskat)abstract
    • Global demand for cobalt is increasing rapidly as we transition to a low-carbon economy. In order to ensure secure and sustainable supplies of this critical metal there is considerable interest in Europe in understanding the availability of cobalt from indigenous resources. This study reviews information on cobalt resources in Europe and evaluates the potential for additional discoveries. Based on published information and a survey of national mineral resource agencies, 509 cobalt-bearing deposits and occurrences have been identified in 25 countries in Europe. Harmonised cobalt resources, classified using the United Nations Framework Classification (UNFC), have been estimated for 151 deposits in 12 countries where data are available. The calculated total resource comprises 1 342 649 tonnes of contained cobalt metal. This includes: 114 638 tonnes in commercial projects with current cobalt extraction; 370 409 tonnes in potentially commercial projects; 111 107 tonnes in historic estimates compliant with modern reporting; and 746 495 tonnes in non-compliant historic estimates. Analysis of these data reveals that cobalt resources are widely distributed across Europe in deposits of several different types. Global mine production of cobalt is dominated by stratiform sediment-hosted copper deposits, magmatic nickel-copper deposits and nickel laterite deposits, but other deposit types may also be significantly enriched in cobalt. In Europe, current cobalt production is derived from three mines in Finland: the magmatic sulfide deposit at Kevitsa; the Kylylahti deposit of volcanogenic massive sulfide (VMS) affinity; and the black shale-hosted deposit at Sotkamo (Talvivaara). This study has identified 104 deposits in Europe that are currently being explored for cobalt, of which 79 are located in Finland, Norway and Sweden. The Fennoscandian Shield and the Caledonian Belt in these countries are high priority exploration terrains for a variety of cobalt-bearing deposits, notably magmatic Ni-Cu-Co deposits. The Svecofennian, Sveconorwegian and the Caledonian orogenies in Fennoscandia also resulted in the formation of several other cobalt-enriched deposit types. These include chiefly metasedimentand metavolcanichosted Co-Cu-Au, VMS, skarn and polymetallic vein deposits. The Kupferschiefer deposits in Poland and Germany are stratiform sediment-hosted Cu deposits with some similarities to the Central African Copperbelt, which is the predominant global producer. However, the cobalt grade in the Kupferschiefer deposits is relatively low (0.005-0.008% Co) and not currently economic to exploit without significant improvement in extraction technology. In the Balkans and Turkey cobalt grades and tonnages are known in 27 nickel laterite deposits, with several containing more than 10 000 tonnes of cobalt metal. Only nickel is currently recovered from these deposits, but new processing technologies such as high-pressure acid leaching could enable cobalt recovery in the future. Small polymetallic cobalt-bearing vein deposits in several European countries have been historic producers of cobalt. Today most are uneconomic, but new technologies and the drive towards locally-sourced raw materials could make them viable future sources of cobalt.
  •  
2.
  • Bingen, B., et al. (författare)
  • Geochronology of the Palaeoproterozoic Kautokeino Greenstone Belt, Finnmark, Norway: Tectonic implications in a Fennoscandia context.
  • 2015
  • Ingår i: Norwegian Journal of Geology. - : Geological Society of Norway. - 2387-5844 .- 2387-5852. ; 95, s. 365-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Zircon U–Pb geochronological data in 18 samples from Finnmarksvidda and one sample from the Repparfjord Tectonic Window, northern Norway, constrain the evolution of the Palaeoproterozoic Kautokeino Greenstone Belt and neighbouring units in a Fennoscandia context. The Jergul Complex is an Archaean cratonic block of Karelian affinity, made of variably gneissic, tonalite–trondhjemite–granodiorite–granite plutonic rocks formed between 2975 ± 10 and 2776 ± 6 Ma. It is associated with the Archaean Goldenvárri greenstone–schist formation. At the base of the Kautokeino Greenstone Belt, the Masi Formation is a typical Jatulian quartzite, hosting a Haaskalehto-type, albite–magnetite-rich, mafic sill dated at 2220 ± 7 Ma. The Likčá and Čáskejas formations represent the main event of basaltic magmatism. A synvolcanic metagabbro dates this magmatism at 2137 ± 5 Ma. The geochemical and Nd isotopic signature of the Čáskejas Formation (eNd = +2.2 ± 1.7) is remarkably similar to coeval dykes intruding the Archaean Karelian Craton in Finland and Russia (eNd = +2.5 ± 1.0). The Čáskejas Formation can be correlated with the Kvenvik Formation in the Alta–Kvænangen Tectonic Window. Two large granite plutons yield ages of 1888 ± 7 and 1865 ± 8 Ma, and provide a maximum age for shearing along two prominent NNW–SSE-oriented shear zones recording Svecokarelian transpression. The Bidjovagge Au–Cu deposit formed around 1886 to 1837 Ma and is also related to this NNW–SSE-oriented shear system. The Ráiseatnu Complex is mainly composed of granitic gneisses formed between 1868 ± 13 and 1828 ± 5 Ma, and containing metasediment rafts and zircon xenocrysts ranging from c. 3100 to 2437 Ma. The Kautokeino Greenstone Belt and Ráiseatnu Complex are interpreted as Palaeoproterozoic, pericontinental, lithospheric domains formed during rifting between Archaean cratonic domains. They accommodated oblique convergence between the Karelian and the Norrbotten Archaean cratons during the Svecokarelian orogeny.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy