SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sangwan Virender S) "

Sökning: WFRF:(Sangwan Virender S)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dravida, Subhadra, et al. (författare)
  • A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation
  • 2008
  • Ingår i: JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE. - : John Wiley and Sons. - 1932-6254 .- 1932-7005. ; 2:5, s. 263-271
  • Tidskriftsartikel (refereegranskat)abstract
    • Limbal tissues can be cultured on various types of scaffolds to create a sheet of limbal-corneal epithelium for research as well as clinical transplantation. An optically clear, biocompatible, biomimetic scaffold would be an ideal replacement graft for transplanting limbal stem cells. in this study, we evaluated the physical and culture characteristics of the recombinant human cross-linked collagen scaffold (RHC-III scaffold) and compared it with denuded human amniotic membrane (HAM). Optical/mechanical properties and microbial susceptibility were measured for the scaffolds. With the approval of the institutional review board, 2 mm. fresh human limbal tissues were cultured on 2.5 x 2.5 cm(2) scaffolds in a medium containing autologous serum in a feeder cell-free submerged system. The cultured cell systems were characterized by morphology and immunohistochemistry for putative stem cells and differentiated cell markers. The refractive index (RI) and tensile strength of the RHC-III scaffold were comparable to human cornea, with delayed in vitro degradation compared to HAM. RHC-III scaffolds were 10-fold less susceptible to microbial growth. Cultures were initiated on day 1, expanded to form a monolayer by day 3 and covered the entire growth surface in 10 days. Stratified epithelium on the scaffolds was visualized by transmission electron microscopy. The cultured cells showed p63 and ABCG2 positivity in the basal layer and were immunoreactive for cytokeratin K3 and K12 in the suprabasal layers. RHC-III scaffold supports and retains the growth and stemness of limbal stem cells, in addition to resembling human cornea; thus, it could be a good replacement scaffold for growing cells for clinical transplantation.
  •  
2.
  • Islam, Mohammad Mirazul, 1984-, et al. (författare)
  • Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation
  • 2018
  • Ingår i: NPJ Regenerative medicine. - : Springer Science and Business Media LLC. - 2057-3995. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The severe worldwide shortage of donor organs, and severe pathologies placing patients at high risk for rejecting conventional cornea transplantation, have left many corneal blind patients untreated. Following successful pre-clinical evaluation in mini-pigs, we tested a biomaterials-enabled pro-regeneration strategy to restore corneal integrity in an open-label observational study of six patients. Cell-free corneal implants comprising recombinant human collagen and phosphorylcholine were grafted by anterior lamellar keratoplasty into corneas of unilaterally blind patients diagnosed at high-risk for rejecting donor allografts. They were followed-up for a mean of 24 months. Patients with acute disease (ulceration) were relieved of pain and discomfort within 1-2 weeks post-operation. Patients with scarred or ulcerated corneas from severe infection showed better vision improvement, followed by corneas with burns. Corneas with immune or degenerative conditions transplanted for symptom relief only showed no vision improvement overall. However, grafting promoted nerve regeneration as observed by improved touch sensitivity to near normal levels in all patients tested, even for those with little/no sensitivity before treatment. Overall, three out of six patients showed significant vision improvement. Others were sufficiently stabilized to allow follow-on surgery to restore vision. Grafting outcomes in mini-pig corneas were superior to those in human subjects, emphasizing that animal models are only predictive for patients with non-severely pathological corneas; however, for establishing parameters such as stable corneal tissue and nerve regeneration, our pig model is satisfactory. While further testing is merited, we have nevertheless shown that cell-free implants are potentially safe, efficacious options for treating high-risk patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy