SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Santolik O.) "

Sökning: WFRF:(Santolik O.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maksimovic, M., et al. (författare)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
2.
  • Maksimovic, M., et al. (författare)
  • The Solar Orbiter Radio and Plasma Waves (RPW) instrument
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.
  •  
3.
  • Hadid, L. Z., et al. (författare)
  • Solar Orbiter's first Venus flyby : Observations from the Radio and Plasma Wave instrument
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On December 27, 2020, Solar Orbiter completed its first gravity assist manoeuvre of Venus (VGAM1). While this flyby was performed to provide the spacecraft with sufficient velocity to get closer to the Sun and observe its poles from progressively higher inclinations, the Radio and Plasma Wave (RPW) consortium, along with other operational in situ instruments, had the opportunity to perform high cadence measurements and study the plasma properties in the induced magnetosphere of Venus.Aims. In this paper, we review the main observations of the RPW instrument during VGAM1. They include the identification of a number of magnetospheric plasma wave modes, measurements of the electron number densities computed using the quasi-thermal noise spectroscopy technique and inferred from the probe-to-spacecraft potential, the observation of dust impact signatures, kinetic solitary structures, and localized structures at the bow shock, in addition to the validation of the wave normal analysis on-board from the Low Frequency Receiver.Methods. We used the data products provided by the different subsystems of RPW to study Venus' induced magnetosphere.Results. The results include the observations of various electromagnetic and electrostatic wave modes in the induced magnetosphere of Venus: strong emissions of similar to 100 Hz whistler waves are observed in addition to electrostatic ion acoustic waves, solitary structures and Langmuir waves in the magnetosheath of Venus. Moreover, based on the different levels of the wave amplitudes and the large-scale variations of the electron number densities, we could identify different regions and boundary layers at Venus.Conclusions. The RPW instrument provided unprecedented AC magnetic and electric field measurements in Venus' induced magnetosphere for continuous frequency ranges and with high time resolution. These data allow for the conclusive identification of various plasma waves at higher frequencies than previously observed and a detailed investigation regarding the structure of the induced magnetosphere of Venus. Furthermore, noting that prior studies were mainly focused on the magnetosheath region and could only reach 10-12 Venus radii (R-V) down the tail, the particular orbit geometry of Solar Orbiter's VGAM1, allowed the first investigation of the nature of the plasma waves continuously from the bow shock to the magnetosheath, extending to similar to 70R(V) in the far distant tail region.
  •  
4.
  • Chust, T., et al. (författare)
  • Observations of whistler mode waves by Solar Orbiter's RPW Low Frequency Receiver (LFR) : In-flight performance and first results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Radio and Plasma Waves (RPW) instrument is one of the four in situ instruments of the ESA/NASA Solar Orbiter mission, which was successfully launched on February 10, 2020. The Low Frequency Receiver (LFR) is one of its subsystems, designed to characterize the low frequency electric (quasi-DC - 10 kHz) and magnetic (similar to 1 Hz-10 kHz) fields that develop, propagate, interact, and dissipate in the solar wind plasma. Combined with observations of the particles and the DC magnetic field, LFR measurements will help to improve the understanding of the heating and acceleration processes at work during solar wind expansion.Aims. The capability of LFR to observe and analyze a variety of low frequency plasma waves can be demontrated by taking advantage of whistler mode wave observations made just after the near-Earth commissioning phase of Solar Orbiter. In particular, this is related to its capability of measuring the wave normal vector, the phase velocity, and the Poynting vector for determining the propagation characteristics of the waves.Methods. Several case studies of whistler mode waves are presented, using all possible LFR onboard digital processing products, waveforms, spectral matrices, and basic wave parameters.Results. Here, we show that whistler mode waves can be very properly identified and characterized, along with their Doppler-shifted frequency, based on the waveform capture as well as on the LFR onboard spectral analysis.Conclusions. Despite the fact that calibrations of the electric and magnetic data still require some improvement, these first whistler observations show a good overall consistency between the RPW LFR data, indicating that many science results on these waves, as well as on other plasma waves, can be obtained by Solar Orbiter in the solar wind.
  •  
5.
  • Kretzschmar, M., et al. (författare)
  • Whistler waves observed by Solar Orbiter/RPW between 0.5 AU and 1 AU
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Solar wind evolution differs from a simple radial expansion, while wave-particle interactions are assumed to be the major cause for the observed dynamics of the electron distribution function. In particular, whistler waves are thought to inhibit the electron heat flux and ensure the diffusion of the field-aligned energetic electrons (Strahl electrons) to replenish the halo population.Aims. The goal of our study is to detect and characterize the electromagnetic waves that have the capacity to modify the electron distribution functions, with a special focus on whistler waves.Methods. We carried out a detailed analysis of the electric and magnetic field fluctuations observed by the Solar Orbiter spacecraft during its first orbit around the Sun, between 0.5 and 1 AU. Using data from the Search Coil Magnetometer and electric antenna, both part of the Radio and Plasma Waves (RPW) instrumental suite, we detected the electromagnetic waves with frequencies above 3 Hz and determined the statistical distribution of their amplitudes, frequencies, polarization, and k-vector as a function of distance. Here, we also discuss the relevant instrumental issues regarding the phase between the electric and magnetic measurements as well as the effective length of the electric antenna.Results. An overwhelming majority of the observed waves are right-handed circularly polarized in the solar wind frame and identified as outwardly propagating quasi-parallel whistler waves. Their occurrence rate increases by a least a factor of 2 from 1 AU to 0.5 AU. These results are consistent with the regulation of the heat flux by the whistler heat flux instability. Near 0.5 AU, whistler waves are found to be more field-aligned and to have a smaller normalized frequency (f/f(ce)), larger amplitude, and greater bandwidth than at 1 AU.
  •  
6.
  • Soucek, J., et al. (författare)
  • Solar Orbiter Radio and Plasma Waves - Time Domain Sampler : In-flight performance and first results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Radio and Plasma Waves (RPW) instrument on board Solar Orbiter has been operating nearly continuously since the launch in February 2020. The Time Domain Sampler (TDS) receiver of the RPW instrument is dedicated to waveform measurements of plasma waves and dust impact signatures in an intermediate frequency range from 0.2 to 200 kHz. Aims. This article presents the first data from the RPW-TDS receiver and discusses the in-flight performance of the instrument and, in particular, the on-board wave and dust detection algorithm. We present the TDS data products and its scientific operation. We demonstrate the content of the dataset on several examples. In particular, we study the distribution of solar Langmuir waves in the first year of observations and one Type III burst event. Methods. The on-board detection algorithm is described in detail in this article and classifies the observed waveform snapshots, identifying plasma waves and dust impacts based on the ratio of their maximum amplitude to their median and on the spectral bandwidth. The algorithm allows TDS to downlink the most scientifically relevant waveforms and to perform an on-board statistical characterization of the processed data. Results. The detection algorithm of TDS is shown to perform very well in its detection of plasma waves and dust impacts with a high accuracy. The initial analysis of statistical data returned by TDS shows that sporadic Langmuir waves that are not associated with Type III events are routinely observed in the inner heliosphere, with a clear increase in occurrence rate closer to the Sun. We also present an example of RPW observations during an encounter of the source region of a Type III burst, which exploits the on-board calculated histograms data.
  •  
7.
  • Turner, D. L., et al. (författare)
  • Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS)
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 122:11, s. 11201-11226
  • Tidskriftsartikel (refereegranskat)abstract
    • Whistler mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L shells (5.5 < L < 8.5), magnetic local time (06: 00 < MLT < 09: 00), and magnetic latitude (-32 degrees < MLAT < -15 degrees), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with MMS. These chorus elements were all lower band and rising tone emissions, right-handed and nearly circularly polarized, and propagating away from the magnetic equator when they were observed at MMS (MLAT similar to-31 degrees). Most of the elements had "hook"-like signatures on their wave power spectra, characterized by enhanced wave power at flat or falling frequency following the peak, and all the elements exhibited complex and well-organized substructure observed consistently at all four MMS spacecraft at separations up to 70 km (60 km perpendicular and 38 km parallel to the background magnetic field). The waveforms in field-aligned coordinates also demonstrated that these waves were all phase coherent, allowing for the direct calculation of k. Error estimates on calculated k revealed that the plane wave approximation was valid for six of the eight elements and most of the subelements. The wave normal vectors were within 20-30 degrees from the direction antiparallel to the background field for all elements and changed from subelement to subelement through at least two of the eight elements. The azimuthal angle of k in the perpendicular plane was oriented earthward and was oblique to that of the Poynting vector, which has implications for the validity of cold plasma theory.
  •  
8.
  • Chust, T., et al. (författare)
  • A low frequency receiver for the Solar Orbiter mission
  • 2006
  • Konferensbidrag (refereegranskat)abstract
    • The Low Frequency Receiver (LFR) is one of the main subsystems of the Radio and Plasma Wave (RPW) experiment that we wish to submit in response to a possible Announcement of Opportunity for the Solar Orbiter payload. It will be connected to two different sensor units: an electric antenna unit and a magnetic search coil unit that will be optimized to perform both quasi-DC and high frequency measurements. The LFR is dedicated to analyse and process onboard the low frequency signals from a fraction of a Hertz up to -10 kHz, covering in situ measurements of the electromagnetic waves of the solar wind and extended corona. Due to the telemetry constraints different strategies for analysing and transmitting the data have to be defined, implying different onboard working modes. The design and the technological characteristics of the LFR are presented.
  •  
9.
  • Deng, X. H., et al. (författare)
  • Dynamics and waves near multiple magnetic null points in reconnection diffusion region
  • 2009
  • Ingår i: Journal of Geophysical Research. - : Blackwell Publishing. - 0148-0227 .- 2156-2202. ; 114:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the magnetic structure in the region where the magnetic field lines break and how reconnection happens is crucial to improving our understanding of three-dimensional reconnection. Here we show the in situ observation of magnetic null structures in the diffusion region, the dynamics, and the associated waves. Possible spiral null pair has been identified near the diffusion region. There is a close relation among the null points, the bipolar signature of the Z component of the magnetic field, and enhancement of the flux of energetic electrons up to 100 keV. Near the null structures, whistler-mode waves were identified by both the polarity and the power law of the spectrum of electric and magnetic fields. It is found that the angle between the fans of the nulls is quite close to the theoretically estimated maximum value of the group-velocity cone angle for the whistler wave regime of reconnection.
  •  
10.
  • Fu, H. S., et al. (författare)
  • Discrete magnetosonic waves as an evidence of nonlinear wave-particle interaction
  • 2014
  • Ingår i: 2014 XXXITH URSI General Assembly And Scientific Symposium (URSI GASS). - 9781467352253
  • Konferensbidrag (refereegranskat)abstract
    • Two events, showing strong emissions near the lower hybrid frequency, are studied in detail in this paper. By analyzing the polarization degree, wave normal angle, and ellipticity, we conclude that the emissions are magnetosonic (MS) waves. These MS waves have opposite poynting fluxes in the radial and azimuthal direction, indicating that they were detected near the source region. In the wave spectrogram, discrete and "rising-tone" elements are found, suggesting that MS waves probably are a consequence of nonlinear wave-particle interaction.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy