SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sarasa L) "

Sökning: WFRF:(Sarasa L)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pannee, Josef, 1979, et al. (författare)
  • The global Alzheimer's Association round robin study on plasma amyloid beta methods
  • 2021
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Blood-based assays to measure brain amyloid beta (A beta) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure A beta and how they compare among centers and assays. Methods Aliquots from 81 plasma samples were distributed to 10 participating centers. Seven immunological assays and four mass-spectrometric methods were used to measure plasma A beta concentrations. Results Correlations were weak for A beta 42 while A beta 40 correlations were stronger. The ratio A beta 42/A beta 40 did not improve the correlations and showed weak correlations. Discussion The poor correlations for A beta 42 in plasma might have several potential explanations, such as the high levels of plasma proteins (compared to CSF), sensitivity to pre-analytical sample handling and specificity, and cross-reactivity of different antibodies. Different methods might also measure different pools of plasma A beta 42. We, however, hypothesize that greater correlations might be seen in future studies because many of the methods have been refined during completion of this study.
  •  
2.
  • Perez-Grijalba, V, et al. (författare)
  • Plasma Aβ42/40 ratio alone or combined with FDG-PET can accurately predict amyloid-PET positivity: a cross-sectional analysis from the AB255 Study
  • 2019
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11:1, s. 96-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundTo facilitate population screening and clinical trials of disease-modifying therapies for Alzheimer’s disease, supportive biomarker information is necessary. This study was aimed to investigate the association of plasma amyloid-beta (Aβ) levels with the presence of pathological accumulation of Aβ in the brain measured by amyloid-PET. Both plasma Aβ42/40 ratio alone or combined with an FDG-PET-based biomarker of neurodegeneration were assessed as potential AD biomarkers.MethodsWe included 39 cognitively normal subjects and 20 patients with mild cognitive impairment from the AB255 Study who had undergone PiB-PET scans. Total Aβ40 and Aβ42 levels in plasma (TP42/40) were quantified using ABtest kits. Subjects were dichotomized as Aβ-PET positive or negative, and the ability of TP42/40 to detect Aβ-PET positivity was assessed by logistic regression and receiver operating characteristic analyses. Combination of plasma Aβ biomarkers and FDG-PET was further assessed as an improvement for brain amyloidosis detection and diagnosis classification.ResultsEighteen (30.5%) subjects were Aβ-PET positive. TP42/40 ratio alone identified Aβ-PET status with an area under the curve (AUC) of 0.881 (95% confidence interval [CI] = 0.779–0.982). Discriminating performance of TP42/40 to detect Aβ-PET-positive subjects yielded sensitivity and specificity values at Youden’s cutoff of 77.8% and 87.5%, respectively, with a positive predictive value of 0.732 and negative predictive value of 0.900. All these parameters improved after adjusting the model for significant covariates. Applying TP42/40 as the first screening tool in a sequential diagnostic work-up would reduce the number of Aβ-PET scans by 64%. Combination of both FDG-PET scores and plasma Aβ biomarkers was found to be the most accurate Aβ-PET predictor, with an AUC of 0.965 (95% CI = 0.913–0.100).ConclusionsPlasma TP42/40 ratio showed a relevant and significant potential as a screening tool to identify brain Aβ positivity in preclinical and prodromal stages of Alzheimer’s disease.
  •  
3.
  • Perez-Grijalba, V, et al. (författare)
  • Plasma Aβ42/40 Ratio Detects Early Stages of Alzheimer's Disease and Correlates with CSF and Neuroimaging Biomarkers in the AB255 Study
  • 2019
  • Ingår i: The journal of prevention of Alzheimer's disease. - : SERDI. - 2426-0266 .- 2274-5807. ; 6:1, s. 34-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Easily accessible biomarkers are needed for the early identification of individuals at risk of developing Alzheimer’s disease (AD) in large population screening strategies. Objectives: This study evaluated the potential of plasma β-amyloid (Aβ) biomarkers in identifying early stages of AD and predicting cognitive decline over the following two years. Design: Total plasma Aβ42/40 ratio (TP42/40) was determined in 83 cognitively normal individuals (CN) and 145 subjects with amnestic mild cognitive impairment (a-MCI) stratified by an FDG-PET AD-risk pattern. Results: Significant lower TP42/40 ratio was found in a-MCI patients compared to CN. Moreover, a-MCIs with a high-risk FDG-PET pattern for AD showed even lower plasma ratio levels. Low TP42/40 at baseline increased the risk of progression to dementia by 70%. Furthermore, TP42/40 was inversely associated with neocortical amyloid deposition (measured with PiB-PET) and was concordant with the AD biomarker profile in cerebrospinal fluid (CSF). Conclusions: TP42/40 demonstrated value in the identification of individuals suffering a-MCI, in the prediction of progression to dementia, and in the detection of underlying AD pathology revealed by FDG-PET, Amyloid-PET and CSF biomarkers, being, thus, consistently associated with all the well-established indicators of AD.
  •  
4.
  • Janelidze, Shorena, et al. (författare)
  • Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma A beta 42/A beta 40 and p-tau
  • 2022
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:2, s. 283-293
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We studied usefulness of combining blood amyloid beta A(beta)42/A beta 40, phosphorylated tau (p-tau)217, and neurofilament light (NfL) to detect abnormal brain A beta deposition in different stages of early Alzheimer's disease (AD). Methods: Plasma biomarkers were measured using mass spectrometry (A beta 42/A beta 40) and immunoassays (p-tau217 and NfL) in cognitively unimpaired individuals (CU, N = 591) and patients with mild cognitive impairment (MCI, N = 304) from two independent cohorts (BioFINDER-1, BioFINDER-2). Results: In CU, a combination of plasma A beta 42/A beta 40 and p-tau217 detected abnormal brain A beta status with area under the curve (AUC) of 0.83 to 0.86. In MCI, the models including p-tau217 alone or A beta 42/A beta 40 and p-tau217 had similar AUCs (0.86-0.88); however, the latter showed improved model fit. The models were implemented in an online application providing individualized risk assessments (https://brainapps.shinyappas.io/PredictAAbplasma/). Discussion:A combination of plasma A beta 42/A beta 40 and p-tau217 discriminated A beta status with relatively high accuracy, whereas p-tau217 showed strongest associations with A beta pathology in MCI but not in CU.
  •  
5.
  • Cullen, Nicholas C., et al. (författare)
  • Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations
  • 2021
  • Ingår i: Nature Aging. - : Springer Science and Business Media LLC. - 2662-8465. ; 1, s. 114-123
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed models for individualized risk prediction of cognitive decline in mild cognitive impairment (MCI) using plasma biomarkers of β-amyloid (Aβ), tau and neurodegeneration. A total of 573 patients with MCI from the Swedish BioFINDER study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were included in the study. The primary outcomes were longitudinal cognition and conversion to Alzheimer’s disease (AD) dementia. A model combining tau phosphorylated at threonine 181 (P-tau181) and neurofilament light (NfL), but not Aβ42/Aβ40, had the best prognosis performance of all models (area under the curve = 0.88 for 4-year conversion to AD in BioFINDER, validated in ADNI), was stronger than a basic model of age, sex, education and baseline cognition, and performed similarly to cerebrospinal fluid biomarkers. A publicly available online tool for individualized prognosis in MCI based on our combined plasma biomarker models is introduced. Combination of plasma biomarkers may be of high value to identify individuals with MCI who will progress to AD dementia in clinical trials and in clinical practice.
  •  
6.
  • Florez-Sarasa, Igor, et al. (författare)
  • In vivo cytochrome and alternative pathway respiration in leaves of Arabidopsis thaliana plants with altered alternative oxidase under different light conditions
  • 2011
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791. ; 34:8, s. 1373-1383
  • Tidskriftsartikel (refereegranskat)abstract
    • The in vivo activity of the alternative pathway (V-alt) has been studied using the oxygen isotope fractionation method in leaves of Arabidopsis thaliana modified for the expression of the AtAOX1a gene by anti-sense (AS-12) or overexpression (XX-2). Under non-stressful conditions, V-alt was similar in all plant lines regardless of its different alternative pathway capacities (V-alt). Total leaf respiration (V-t) and V-alt were directly related to growth light conditions while electron partitioning between the cytochrome pathway (CP) and alternative pathway (AP) was unchanged by light levels. Interestingly, the AP functioned at full capacity in anti-sense plants under both growth light conditions. The role of the AP in response to a high light stress induced by short-term high light treatment (HLT) was also studied. In wild type and XX-2, both CP and AP rates increased proportionally after HLT while in AS-12, where the AP was unable to increase its rate, the CP accommodated all the increase in respiration. The results obtained under high light stress suggest that flexibility in the response of the mitochondrial electron transport chain is involved in sustaining photosynthetic rates in response to this stress while the saturated AP in AS-12 plants may contribute to the observed increase in photoinhibition.
  •  
7.
  • Florez-Sarasa, Igor, et al. (författare)
  • Light-responsive metabolite and transcript levels are maintained following a dark-adaptation period in leaves of Arabidopsis thaliana.
  • 2012
  • Ingår i: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 195:1, s. 136-148
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of previous light conditions on metabolite and transcript levels was investigated in leaves of Arabidopsis thaliana during illumination and after light-enhanced dark respiration (LEDR), when dark respiration was measured. • Primary carbon metabolites and the expression of light-responsive respiratory genes were determined in A. thaliana leaves before and after 30 min of darkness following different light conditions. In addition, metabolite levels were determined in the middle of the night and the in vivo activities of cytochrome and alternative respiratory pathways were determined by oxygen isotope fractionation. • A large number of metabolites were increased in leaves of plants growing in or transiently exposed to higher light intensities. Transcript levels of respiratory genes were also increased after high light treatment. For the majority of the light-induced metabolites and transcripts, the levels were maintained after 30 min of darkness, where higher and persistent respiratory activities were also observed. The levels of many metabolites were lower at night than after 30 min of darkness imposed in the day, but respiratory activities remained similar. • The results obtained suggest that 'dark' respiration measurements, as usually performed, are probably made under conditions in which the overall status of metabolites is strongly influenced by the previous light conditions.
  •  
8.
  • Janelidze, S., et al. (författare)
  • Head-to-Head Comparison of 8 Plasma Amyloid-beta 42/40 Assays in Alzheimer Disease
  • 2021
  • Ingår i: Jama Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:11, s. 1375-1382
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Blood-based tests for brain amyloid-beta (A beta) pathology are needed for widespread implementation of Alzheimer disease (AD) biomarkers in clinical care and to facilitate patient screening and monitoring of treatment responses in clinical trials. OBJECTIVE To compare the performance of plasma A beta 42/40 measured using 8 different A beta assays when detecting abnormal brain A beta status in patients with early AD. DESIGN, SETTING, AND PARTICIPANTS This study included 182 cognitively unimpaired participants and 104 patients with mild cognitive impairment from the BioFINDER cohort who were enrolled at 3 different hospitals in Sweden and underwent A beta positron emission tomography (PET) imaging and cerebrospinal fluid (CSF) and plasma collection from 2010 to 2014. Plasma A beta 42/40 was measured using an immunoprecipitation-coupled mass spectrometry developed at Washington University (IP-MS-WashU), antibody-free liquid chromatography MS developed by Araclon (LC-MS-Arc), and immunoassays from Roche Diagnostics (IA-Elc); Euroimmun (IA-EI); and Amsterdam University Medical Center, ADx Neurosciences, and Quanterix (IA-N4PE). Plasma A beta 42/40 was also measured using an IP-MS-based method from Shimadzu in 200 participants (IP-MS-Shim) and an IP-MS-based method from the University of Gothenburg (IP-MS-UGOT) and another immunoassay from Quanterix (IA-Quan) among 227 participants. For validation, 122 participants (51 cognitively normal, 51 with mild cognitive impairment, and 20 with AD dementia) were included from the Alzheimer Disease Neuroimaging Initiative who underwent A beta-PET and plasma A beta assessments using IP-MS-WashU, IP-MS-Shim, IP-MS-UGOT, IA-Elc, IA-N4PE, and IA-Quan assays. MAIN OUTCOMES AND MEASURES Discriminative accuracy of plasma A beta 42/40 quantified using 8 different assays for abnormal CSF A beta 42/40 and A beta-PET status. RESULTS A total of 408 participants were included in this study. In the BioFINDER cohort, the mean (SD) age was 71.6 (5.6) years and 49.3% of the cohort were women. When identifying participants with abnormal CSF A beta 42/40 in the whole cohort, plasma IP-MS-WashU A beta 42/40 showed significantly higher accuracy (area under the receiver operating characteristic curve [AUC], 0.86; 95% CI, 0.81-0.90) than LC-MS-Arc A beta 42/40, IA-Elc A beta 42/40, IA-EI A beta 42/40, and IA-N4PE A beta 42/40 (AUC range, 0.69-0.78; P < .05). Plasma IP-MS-WashU A beta 42/40 performed significantly better than IP-MS-UGOT A beta 42/40 and IA-Quan A beta 42/40 (AUC, 0.84 vs 0.68 and 0.64, respectively; P < .001), while there was no difference in the AUCs between IP-MS-WashU A beta 42/40 and IP-MS-Shim A beta 42/40 (0.87 vs 0.83; P = .16) in the 2 subcohorts where these biomarkers were available. The results were similar when using A beta-PET as outcome. Plasma IPMS-WashU A beta 42/40 and IPMS-Shim A beta 42/40 showed highest coefficients for correlations with CSF A beta 42/40 (r range, 0.56-0.65). The BioFINDER results were replicated in the Alzheimer Disease Neuroimaging Initiative cohort (mean [SD] age, 72.4 [5.4] years; 43.4% women), where the IP-MS-WashU assay performed significantly better than the IP-MS-UGOT, IA-Elc, IA-N4PE, and IA-Quan assays but not the IP-MS-Shim assay. CONCLUSIONS AND RELEVANCE The results from 2 independent cohorts indicate that certain MS-based methods performed better than most of the immunoassays for plasma A beta 42/40 when detecting brain A beta pathology.
  •  
9.
  • Wallström, Sabá, et al. (författare)
  • Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in Arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.
  • 2014
  • Ingår i: Plant and Cell Physiology. - : Oxford University Press (OUP). - 1471-9053 .- 0032-0781. ; 55:5, s. 881-896
  • Tidskriftsartikel (refereegranskat)abstract
    • The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III, and IV. These energy-bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox-stabilisation and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)(+)-ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA-suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.
  •  
10.
  • Wallström, Sabá, et al. (författare)
  • Suppression of the external mitochondrial NADPH dehydrogenase, NDB1, in Arabidopsis thaliana affects central metabolism and vegetative growth.
  • 2014
  • Ingår i: Molecular Plant. - : Elsevier BV. - 1752-9867 .- 1674-2052. ; 7:2, s. 356-368
  • Tidskriftsartikel (refereegranskat)abstract
    • Ca(2+)-dependent oxidation of cytosolic NADPH is mediated by NDB1, which is an external type II NADPH dehydrogenase in the plant mitochondrial electron transport chain. Using RNA interference, the NDB1 transcript was suppressed by 80% in Arabidopsis thaliana plants, and external Ca(2+)-dependent NADPH dehydrogenase activity became undetectable in isolated mitochondria. This was linked to a decreased level of NADP+ in rosettes of the transgenic lines. Sterile-grown transgenic seedlings displayed decreased growth specifically on glucose, and respiratory metabolism of (14)C-glucose was increased. On soil, NDB1-suppressing plants had a decreased vegetative biomass, but leaf maximum quantum efficiency of photosystem II and CO2 assimilation rates, as well as total respiration were similar to the wild type. The in vivo alternative oxidase activity and capacity were also similar in all genotypes. Metabolic profiling revealed decreased levels of sugars, citric acid cycle intermediates and amino acids in the transgenic lines. The NDB1-suppression induced transcriptomic changes associated with protein synthesis and glucosinolate and jasmonate metabolism. The transcriptomic changes also overlapped with changes observed in a mutant lacking ABAINSENSITIVE4 and in A. thaliana overexpressing stress tolerance genes from rice. The results thus indicate that A. thaliana NDB1 modulates NADP(H) reduction levels, which in turn affect central metabolism and growth, and interact with defence signalling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy