SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sarfraz Muhammad Shahzad) "

Sökning: WFRF:(Sarfraz Muhammad Shahzad)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Usman, Muhammad, et al. (författare)
  • A Blockchain Based Scalable Domain Access Control Framework for Industrial Internet of Things
  • 2024
  • Ingår i: IEEE Access. - : IEEE. - 2169-3536. ; 12, s. 56554-56570
  • Tidskriftsartikel (refereegranskat)abstract
    • Industrial Internet of Things (IIoT) applications consist of resource constrained interconnected devices that make them vulnerable to data leak and integrity violation challenges. The mobility, dynamism, and complex structure of the network further make this issue more challenging. To control the information flow in such environments, access control is critical to make collaboration and communication safe. To deal with these challenges, recent studies employ attribute-based access control on top of blockchain technology. However, the attribute-based access control frameworks suffer due to high computational overhead. In this paper, we propose an improved role-based access control framework using hyperledger blockchain to deal with IIoT requirements with less computational overhead making the information control process more efficient and real-time. The proposed framework leverages a layered architecture of chaincodes to implement the improved access control framework that handles the permission delegation and conflict management to deal with the dynamism of the IIoT network. The system uses a Policy Contract, Device Contract, and Access Contract to manage the workflow of the whole access control process. Each chaincode in the proposed framework is isolated in terms of its responsibilities to make the design low coupled. The integration of improved access control with blockchain enables the proposed framework to provide a highly scalable solution, tamper-proof, and flexible to manage conflicting scenarios. The proposed system outperforms the recent studies significantly in computational overhead in extensive simulation results. To verify the scalability and efficiency, the proposed is evaluated against a large number of concurrent virtual clients in simulation and statistical analysis proves that the proposed system is promising for further research in this domain.
  •  
2.
  • Usman, Muhammad, et al. (författare)
  • Automatic Hybrid Access Control in SCADA-Enabled IIoT Networks Using Machine Learning
  • 2023
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 23:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent advancements in the Internet of Things have made it converge towards critical infrastructure automation, opening a new paradigm referred to as the Industrial Internet of Things (IIoT). In the IIoT, different connected devices can send huge amounts of data to other devices back and forth for a better decision-making process. In such use cases, the role of supervisory control and data acquisition (SCADA) has been studied by many researchers in recent years for robust supervisory control management. Nevertheless, for better sustainability of these applications, reliable data exchange is crucial in this domain. To ensure the privacy and integrity of the data shared between the connected devices, access control can be used as the front-line security mechanism for these systems. However, the role engineering and assignment propagation in access control is still a tedious process as its manually performed by network administrators. In this study, we explored the potential of supervised machine learning to automate role engineering for fine-grained access control in Industrial Internet of Things (IIoT) settings. We propose a mapping framework to employ a fine-tuned multilayer feedforward artificial neural network (ANN) and extreme learning machine (ELM) for role engineering in the SCADA-enabled IIoT environment to ensure privacy and user access rights to resources. For the application of machine learning, a thorough comparison between these two algorithms is also presented in terms of their effectiveness and performance. Extensive experiments demonstrated the significant performance of the proposed scheme, which is promising for future research to automate the role assignment in the IIoT domain.
  •  
3.
  • Sarfraz, Yasir, et al. (författare)
  • Application of statistical and machine learning techniques for landslide susceptibility mapping in the Himalayan road corridors
  • 2022
  • Ingår i: Open Geosciences. - : De Gruyter Open Ltd. - 2391-5447. ; 14:1, s. 1606-1635
  • Tidskriftsartikel (refereegranskat)abstract
    • Landslides are frequent geological hazards, mainly in the rainy season along road corridors worldwide. In the present study, we have comparatively analyzed landslide susceptibility by employing integrated geospatial approaches, i.e., data-driven, knowledge-driven, andmachine learning (ML), along themain road corridors of the Muzaffarabad district. The landslide inventory of three road corridors is developed to evaluate landslide susceptibility, and eleven landslide causative factors (LCFs) were analyzed. After statistical significance analysis, these eleven LCFs generated susceptibility models using WoE, AHP, LR, and RF. Distance from roads, landcover, lithological units, and slopes are considered more influential LCFs. The performancematrix of different LSMs is evaluated through the area under the curve (AUC-ROC), overall accuracy, Kappa index, F1 score, Mean Absolute Error, and Root Mean Square Error. The AUC-ROC for WoE, AHP, LR, and RF techniques along Neelumroad is 0.86, 0.82, 0.91, and 0.97, respectively, along Jhelum Valley road is 0.83, 0.81, 0.93, and 0.95, respectively, while along Kohala road is 0.89, 0.88, 0.89, and 0.92, respectively. The produced LSMs through ML (i.e., RF and LR) showed better prediction accuracies than WoE and AHP along these three road corridors. The LSMs are categorized into very high, high, moderate, and low susceptible zones along these roads. The LSM generated through hybrid models can facilitate the concerned local agencies to implement landslide mitigation policies for the landslideprone zones along road corridors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy