SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sarneel Judith M.) "

Sökning: WFRF:(Sarneel Judith M.)

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stroud, J.T., et al. (författare)
  • Priority effects transcend scales and disciplines in biology
  • 2024
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier. - 0169-5347 .- 1872-8383.
  • Forskningsöversikt (refereegranskat)abstract
    • Although primarily studied through the lens of community ecology, phenomena consistent with priority effects appear to be widespread across many different scenarios spanning a broad range of spatial, temporal, and biological scales. However, communication between these research fields is inconsistent and has resulted in a fragmented co-citation landscape, likely due to the diversity of terms used to refer to priority effects across these fields. We review these related terms, and the biological contexts in which they are used, to facilitate greater cross-disciplinary cohesion in research on priority effects. In breaking down these semantic barriers, we aim to provide a framework to better understand the conditions and mechanisms of priority effects, and their consequences across spatial and temporal scales.
  •  
2.
  • Sarneel, Judith M., et al. (författare)
  • Reading tea leaves worldwide : decoupled drivers of initial litter decomposition mass-loss rate and stabilization
  • 2024
  • Ingår i: Ecology Letters. - : John Wiley & Sons. - 1461-023X .- 1461-0248. ; 27:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.
  •  
3.
  • Lembrechts, Jonas J., et al. (författare)
  • Global maps of soil temperature
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Tidskriftsartikel (refereegranskat)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
4.
  • Ludewig, Kristin, et al. (författare)
  • Phenology and morphology of the invasive legume Lupinus polyphyllus along a latitudinal gradient in Europe
  • 2022
  • Ingår i: NeoBiota. - : Pensoft Publishers. - 1619-0033 .- 1314-2488. ; 78
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant phenology, i. e. the timing of life cycle events, is related to individual fitness and species distributionranges. Temperature is one of the most important drivers of plant phenology together with day length.The adaptation of their phenology may be important for the success of invasive plant species. The presentstudy aims at understanding how the performance and the phenology of the invasive legume Lupinuspolyphyllus vary with latitude. We sampled data across a >2000 km latitudinal gradient from Centralto Northern Europe. We quantified variation in phenology of flowering and fruiting of L. polyphyllususing >1600 digital photos of inflorescences from 220 individual plants observed weekly at 22 sites. Theday of the year at which different phenological phases were reached, increased 1.3–1.8 days per degreelatitude, whereas the growing degree days (gdd) required for these phenological phases decreased 5–16 gddper degree latitude. However, this difference disappeared, when the day length of each day included inthe calculation of gdd was considered. The day of the year of the earliest and the latest climatic zone toreach any of the three studied phenological phases differed by 23–30 days and temperature requirementsto reach these stages differed between 62 and 236 gdd. Probably, the invasion of this species will furtherincrease in the northern part of Europe over the next decades due to climate warming. For invasive speciescontrol, our results suggest that in countries with a large latitudinal extent, the mowing date should shiftby ca. one week per 500 km at sites with similar elevations.
  •  
5.
  • Ludewig, Kristin, et al. (författare)
  • Phenology of Lupinus polyphyllus from Central to Northern Europe
  • 2022
  • Annan publikationabstract
    • Plant phenology, i. e. the timing of life cycle events, is related to individual fitness and species distribution ranges. Among the environmental factors, phenology is mostly driven by temperature and day length. Rapid adaptation of their phenology may also be important for the success of invasive plant species. Our main aim was to understand how the performance, timing, and temperature dependence of the phenology of the invasive legume Lupinus polyphyllus varies with latitude. L. polyphyllus is one of the most frequent invasive species in Europe, and the gained information may help to make management more effective by adjustments to latitude and phenology.Methods:We quantified variation in phenology across a >2000 km latitudinal gradient from Central to Northern Europe. We sampled data of flowering and fruiting of L. polyphyllus using >1600 digital photos of inflorescences from 220 individual plants observed weekly at 22 locations. We calculated the accumulated growing degree days for each observation date at each site from the temperature data of the meteorological stations, which are listed in the metadata of the dataset.
  •  
6.
  • Ochoa-Hueso, Raúl, et al. (författare)
  • Microbial processing of plant remains is co-limited by multiple nutrients in global grasslands
  • 2020
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 26:8, s. 4572-4582
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.
  •  
7.
  • Alsafran, Mohammed H.S.A., et al. (författare)
  • Variation in plant litter decomposition rates across extreme dry environments in Qatar
  • 2017
  • Ingår i: Arab World Geographer. - : The University of Akron Press. - 1480-6800. ; 20:2-3, s. 252-261
  • Forskningsöversikt (refereegranskat)abstract
    • Decomposition of plant litter is a key process for transfer of carbon and nutrients in ecosystems. Carbon contained in decaying biomass is released to the atmosphere as respired CO2, a greenhouse gas that contributes to global warming. To our knowledge, there have been no studies on litter decomposition in terrestrial ecosystems in the Arabian peninsula. Here we used commercial teabags (green tea, rooibos tea) as standard substrates to study decomposition rates across contrasting ecosystems in Qatar. Teabags were buried under and beside Acacia tortilis trees, in depressions with abundant grass vegetation, in saltmarsh without and with vegetation, under Zygophyllum qatarense in drylands, in natural mangrove and in planted mangrove. There were significant site effects across ecosystems on decomposition rate (k), litter stabilisation factor (S), final weight of green tea and final weight of rooibos tea. Mangrove and depressions with grassland had the smallest amounts of remaining green and rooibos tea after the incubation period (69-82 days), while teabags buried under A. tortilis and in saltmarsh without vegetation had the largest amounts. Thus decomposition rates differ among ecosystems in the desert environment. Further multi-year and site studies are needed to identify factors that influence decomposition rates across sites in extreme environments.
  •  
8.
  • Beltman, B., et al. (författare)
  • Phosphate Release Upon Long- and Short -Term Flooding of Fen Meadows Depends on Land Use History and Soil pH
  • 2014
  • Ingår i: Wetlands (Wilmington, N.C.). - : Springer Netherlands. - 0277-5212 .- 1943-6246. ; 34:5, s. 989-1001
  • Tidskriftsartikel (refereegranskat)abstract
    • Flooding of acidified and desiccated fen meadows is a management approach for mitigating loss of plant species as well as a short-term measure to prevent flooding in urban areas. Studies have shown that flooding events can cause extreme P release from soils. We questioned whether the occurrence of this 'internal eutrophication' from flooding depended on fertilization history and soil pH. A greenhouse experiment with soil cores from Ireland (turloughs) and from the Netherlands, exposed to flooding for 216 days (long-term) showed a substantial P release for sites with a history of fertilizer use only. Short-term flooding (20-25 days) caused little P release in all soils. There was no correlation between P release and initial soil pH (range 4.1-7.1). All flooded soils showed a significant decline in sulfate and increased iron in the pore water upon flooding. Field trials applying short term flooding to sites differing in soil pH, average soil moisture and history of fertilizer application showed there was no overall effect of flooding on phosphate, nitrate, ammonium, iron concentrations and pH of pore water. Sulfate concentrations significantlyincreased. Hence, problematic phosphate release is only induced by long term flooding of fen meadows with a history of fertilization.
  •  
9.
  • Keuskamp, Joost A., et al. (författare)
  • Tea Bag Index : a novel approach to collect uniform decomposition data across ecosystems
  • 2013
  • Ingår i: Methods in Ecology and Evolution. - : Wiley-Blackwell. - 2041-210X. ; 4:11, s. 1070-1075
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Changes in the balance between soil carbon storage and release can significantly amplify or attenuate global warming. Although a lot of progress has been made in determining potential drivers of carbon release through large-scale decomposition experiments, climate predictions are still hampered by data limitation at a global scale as a result of high effort and measurement costs of comparative litter decomposition studies.2. We introduce an innovative, cost-effective, well-standardised method to gather data on decomposition rate and litter stabilisation using commercially available tea bags as standardised test kits. By using two tea types with contrasting decomposability, we can construct a decomposition curve using a single measurement in time. The acquired Tea Bag Index (TBI) consists of two parameters describing decomposition rate (k) and litter stabilisation factor (S).3. The method was tested for its sensitivity and robustness in contrasting ecosystems and biomes, confirming that the TBI is sensitive enough to discriminate between these systems. Within an ecosystem, TBI is responsive to differences in abiotic circumstances such as soil temperature and moisture content. The collected k and S values are in accordance with expectations based on decomposition process literature. They are therefore interpretable within the current knowledge framework.4. Tea Bag Index is a unique, multifunctional method requiring few resources and minimal prior knowledge. The standardisation and simplicity of the method make it possible to collect comparable, globally distributed data through crowdsourcing. TBI can further provide an excellent decomposition reference and has the potential to increase reliability of soil carbon flux estimates based on extrapolations of decomposition data.
  •  
10.
  • Sarneel, Judith M., et al. (författare)
  • Alternative transient states and slow plant community responses after changed flooding regimes
  • 2019
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 25:4, s. 1358-1367
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change will have large consequences for flooding frequencies in freshwater systems. In interaction with anthropogenic activities (flow regulation, channel restoration and catchment land-use) this will both increase flooding and drought across the world. Like in many other ecosystems facing changed environmental conditions, it remains difficult to predict the rate and trajectory of vegetation responses to changed conditions. Given that critical ecosystem services (e.g. bank stabilization, carbon subsidies to aquatic communities or water purification) depend on riparian vegetation composition, it is important to understand how and how fast riparian vegetation responds to changing flooding regimes. We studied vegetation changes over 19 growing seasons in turfs that were transplanted in a full-factorial design between three riparian elevations with different flooding frequencies. We found that (a) some transplanted communities may have developed into an alternative stable state and were still different from the target community, and (b) pathways of vegetation change were highly directional but alternative trajectories did occur, (c) changes were rather linear but faster when flooding frequencies increased than when they decreased, and (d) we observed fastest changes in turfs when proxies for mortality and colonization were highest. These results provide rare examples of alternative transient trajectories and stable states under field conditions, which is an important step towards understanding their drivers and their frequency in a changing world.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37
Typ av publikation
tidskriftsartikel (34)
forskningsöversikt (2)
annan publikation (1)
Typ av innehåll
refereegranskat (35)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Sarneel, Judith M. (36)
Nilsson, Christer (6)
Bakker, Elisabeth S. (5)
Hefting, Mariet M. (4)
Alatalo, Juha M. (3)
Bejarano, Maria D. (3)
visa fler...
Polvi, Lina E. (3)
Keuskamp, Joost A. (3)
Gardeström, Johanna (2)
Laudon, Hjalmar (2)
Milberg, Per, 1959- (2)
Eichberg, Carsten (2)
Alsafran, Mohammed H ... (2)
Althuizen, Inge H. J ... (2)
Vandvik, Vigdis (2)
Lind, Lovisa (2)
Smith, Stuart W. (2)
Huig, Naomi (2)
Björkman, Mats P., 1 ... (2)
Barrio, Isabel C. (2)
Björnsdóttir, Katrín (2)
Karlsson, Emma (2)
Aurela, Mika (2)
Thomas, Haydn J.D. (2)
Carbognani, Michele (2)
Lembrechts, Jonas J. (2)
Veen, Ciska (2)
Scheffers, Brett R. (2)
Donath, Tobias W. (2)
Lindmo, Sigrid (2)
Ludewig, Kristin (2)
Hansen, Wiebke (2)
Fanin, Nicolas (2)
Augusto, Laurent (2)
Crowther, Thomas W. (2)
van den Hoogen, Joha ... (2)
Ochoa-Hueso, Raúl (2)
Kowalchuk, George A. (2)
Eisenhauer, Nico (2)
Yahdjian, Laura (2)
Bärmann, Lukas (2)
Görzen, Eugen (2)
Hasselquist, Eliza M ... (2)
Helminger, Thierry (2)
Kaiskog, Frida (2)
Kirchner, Torsten (2)
Knudsen, Carola (2)
Lenzewski, Nikola (2)
Pruchniewicz, Daniel (2)
Sandner, Tobias M. (2)
visa färre...
Lärosäte
Umeå universitet (35)
Sveriges Lantbruksuniversitet (6)
Karlstads universitet (3)
Göteborgs universitet (2)
Linköpings universitet (2)
Stockholms universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (37)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (33)
Lantbruksvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy