SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sarshad A) "

Sökning: WFRF:(Sarshad A)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Cipullo, Miriam, et al. (författare)
  • GTPBP8 plays a role in mitoribosome formation in human mitochondria
  • 2024
  • Ingår i: NATURE COMMUNICATIONS. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial gene expression relies on mitoribosomes to translate mitochondrial mRNAs. The biogenesis of mitoribosomes is an intricate process involving multiple assembly factors. Among these factors, GTP-binding proteins (GTPBPs) play important roles. In bacterial systems, numerous GTPBPs are required for ribosome subunit maturation, with EngB being a GTPBP involved in the ribosomal large subunit assembly. In this study, we focus on exploring the function of GTPBP8, the human homolog of EngB. We find that ablation of GTPBP8 leads to the inhibition of mitochondrial translation, resulting in significant impairment of oxidative phosphorylation. Structural analysis of mitoribosomes from GTPBP8 knock-out cells shows the accumulation of mitoribosomal large subunit assembly intermediates that are incapable of forming functional monosomes. Furthermore, fPAR-CLIP analysis reveals that GTPBP8 is an RNA-binding protein that interacts specifically with the mitochondrial ribosome large subunit 16 S rRNA. Our study highlights the role of GTPBP8 as a component of the mitochondrial gene expression machinery involved in mitochondrial large subunit maturation. Multiple GTP-binding proteins (GTPBPs) aid ribosome maturation. Here, authors pinpoint GTPBP8's involvement in human mitoribosome maturation, demonstrating its specific binding to mitoribosomal large subunit RNA, which is necessary for ribosome assembly and protein synthesis.
  •  
3.
  • Dass, Randall A., et al. (författare)
  • Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I
  • 2016
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo.
  •  
4.
  •  
5.
  • Almuzzaini, Bader, et al. (författare)
  • In beta-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects
  • 2016
  • Ingår i: The FASEB Journal. - 0892-6638 .- 1530-6860. ; 30:8, s. 2860-2873
  • Tidskriftsartikel (refereegranskat)abstract
    • Actin and nuclear myosin 1 (NM1) are regulators of transcription and chromatin organization. Using a genome-wide approach, we report here that beta-actin binds intergenic and genic regions across the mammalian genome, associated with both protein-coding and rRNA genes. Within the rDNA, the distribution of beta-actin correlated with NM1 and the other subunits of the B-WICH complex, WSTF and SNF2h. In beta-actin(-/-) mouse embryonic fibroblasts (MEFs), we found that rRNA synthesis levels decreased concomitantly with drops in RNA polymerase I (Pol I) and NM1 occupancies across the rRNA gene. Reintroduction of wild-type beta-actin, in contrast to mutated forms with polymerization defects, efficiently rescued rRNA synthesis underscoring the direct role for a polymerization-competent form of beta-actin in Pol I transcription. The rRNA synthesis defects in the beta-actin(-/-) MEFs are a consequence of epigenetic reprogramming with up-regulation of the repressive mark H3K4me1 (mono-methylation of lys4 on histone H3) and enhanced chromatin compaction at promoter-proximal enhancer (T0 sequence), which disturb binding of the transcription factor TTF1. We propose a novel genome-wide mechanism where the polymerase-associated beta-actin synergizes with NM1 to coordinate permissive chromatin with Pol I transcription, cell growth, and proliferation.
  •  
6.
  • Almuzzaini, Bader, et al. (författare)
  • Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation
  • 2015
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Nuclear myosin 1c (NM1) is emerging as a regulator of transcription and chromatin organization. Results: Using chromatin immunoprecipitation and deep sequencing (ChIP-Seq) in combination with molecular analyses, we investigated the global association of NM1 with the mammalian genome. Analysis of the ChIP-Seq data demonstrates that NM1 binds across the entire mammalian genome with occupancy peaks correlating with distributions of RNA Polymerase II (Pol II) and active epigenetic marks at class II gene promoters. In mouse embryonic fibroblasts subjected to RNAi mediated NM1 gene silencing, we show that NM1 synergizes with polymerase-associated actin to maintain active Pol II at the promoter. NM1 also co-localizes with the nucleosome remodeler SNF2h at class II promoters where they assemble together with WSTF as part of the B-WICH complex. A high resolution micrococcal nuclease (MNase) assay and quantitative real time PCR shows that this mechanism is required for local chromatin remodeling. Following B-WICH assembly, NM1 mediates physical recruitment of the histone acetyl transferase PCAF and the histone methyl transferase Set1/Ash2 to maintain and preserve H3K9acetylation and H3K4trimethylation for active transcription. Conclusions: We propose a novel genome-wide mechanism where myosin synergizes with Pol II-associated actin to link the polymerase machinery with permissive chromatin for transcription activation.
  •  
7.
  • Huynh, Hang Thuy, et al. (författare)
  • Biochemical Separation of Cytoplasmic and Nuclear Fraction for Downstream Molecular Analysis
  • 2024
  • Ingår i: CURRENT PROTOCOLS. - 2691-1299. ; 4:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Biochemical fractionation is a technique used to isolate and separate distinct cellular compartments, critical for dissecting cellular mechanisms and molecular pathways. Herein we outline a biochemical fraction methodology for isolation of ultra-pure nuclei and cytoplasm. This protocol utilizes hypotonic lysis buffer to suspend cells, coupled with a calibrated centrifugation strategy, for enhanced separation of cytoplasm from the nuclear fraction. Subsequent purification steps ensure the integrity of the isolated nuclear fraction. Overall, this method facilitates accurate protein localization, essential for functional studies, demonstrating its efficacy in separating cellular compartments. (c) 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.Basic Protocol: Biochemical fractionationSupport Protocol 1: Protein quantification using Bradford assaySupport Protocol 2: SDS/PAGE and Western blotting
  •  
8.
  • Lobo, Vivian, et al. (författare)
  • Integrative transcriptomic and proteomic profiling of the effects of cell confluency on gene expression
  • 2024
  • Ingår i: SCIENTIFIC DATA. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we examine the impact of cell confluency on gene expression. We focused on Argonaute (AGO) protein dynamics and associated gene and protein expression in HEK293, A375, and SHSY5Y cell lines. As a consequence of cell confluency, AGO2 protein translocates into the nucleus. Therefore, we generated transcriptomic data using RNA sequencing to compare gene expression in subconfluent versus confluent cells, which highlighted significant alterations in gene regulation patterns directly corresponding to changes in cell density. Our study also encompasses miRNA profiling data obtained through small RNA sequencing, revealing miRNA expressional changes dependent on cellular confluency, as well as cellular localization. Finally, we derived proteomic data from mass spectrometry analyses following AGO1-4 immunoprecipitation, providing a comprehensive view of AGO interactome in both nuclear and cytoplasmic compartments under varying confluency. These datasets offer a detailed exploration of the cellular and molecular dynamics, influenced by cell confluency, presenting a valuable resource for further research in cellular biology, particularly in understanding the basic mechanisms of cell density in cancer cells.
  •  
9.
  • Lobo, Vivian, et al. (författare)
  • Loss of Lamin A leads to the nuclear translocation of AGO2 and compromised RNA interference
  • 2024
  • Ingår i: NUCLEIC ACIDS RESEARCH. - 0305-1048 .- 1362-4962.
  • Tidskriftsartikel (refereegranskat)abstract
    • In mammals, RNA interference (RNAi) was historically studied as a cytoplasmic event; however, in the last decade, a growing number of reports convincingly show the nuclear localization of the Argonaute (AGO) proteins. Nevertheless, the extent of nuclear RNAi and its implication in biological mechanisms remain to be elucidated. We found that reduced Lamin A levels significantly induce nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. Lamin A KO manifested a more pronounced effect in SHSY5Y cells compared to A375 cells, evident by changes in cell morphology, increased cell proliferation, and oncogenic miRNA expression. Moreover, AGO fPAR-CLIP in Lamin A KO SHSY5Y cells revealed significantly reduced RNAi activity. Further exploration of the nuclear AGO interactome by mass spectrometry identified FAM120A, an RNA-binding protein and known interactor of AGO2. Subsequent FAM120A fPAR-CLIP, revealed that FAM120A co-binds AGO targets and that this competition reduces the RNAi activity. Therefore, loss of Lamin A triggers nuclear AGO2 translocation, FAM120A mediated RNAi impairment, and upregulation of oncogenic miRNAs, facilitating cancer cell proliferation.
  •  
10.
  • Nowak, Iwona, et al. (författare)
  • Argonaute Proteins Take Center Stage in Cancers
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary The dysregulation of RNA interference (RNAi) has often been observed in cancers, where the main focus of research has been on the small RNA molecules directing RNAi. In this review, we focus on the activity of Argonaute proteins, central components of RNAi, in tumorigenesis, and also highlight their potential applications in grading tumors and anti-cancer therapies. Argonaute proteins (AGOs) play crucial roles in RNA-induced silencing complex (RISC) formation and activity. AGOs loaded with small RNA molecules (miRNA or siRNA) either catalyze endoribonucleolytic cleavage of target RNAs or recruit factors responsible for translational silencing and target destabilization. miRNAs are well characterized and broadly studied in tumorigenesis; nevertheless, the functions of the AGOs in cancers have lagged behind. Here, we discuss the current state of knowledge on the role of AGOs in tumorigenesis, highlighting canonical and non-canonical functions of AGOs in cancer cells, as well as the biomarker potential of AGO expression in different of tumor types. Furthermore, we point to the possible application of the AGOs in development of novel therapeutic approaches.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy