SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Satomi R) "

Sökning: WFRF:(Satomi R)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Namkoong, H, et al. (författare)
  • DOCK2 is involved in the host genetics and biology of severe COVID-19
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 609:7928, s. 754-
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
  •  
2.
  •  
3.
  • Wang, QBS, et al. (författare)
  • The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 4830-
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.
  •  
4.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
5.
  • Smith, Stuart W., et al. (författare)
  • Tree species that 'live slow, die older' enhance tropical peat swamp restoration : Evidence from a systematic review
  • 2022
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 59:8, s. 1950-1966
  • Forskningsöversikt (refereegranskat)abstract
    • 1. Degraded tropical peatlands lack tree cover and are often subject to seasonal flooding and repeated burning. These harsh environments for tree seedlings to survive and grow are therefore challenging to revegetate. Knowledge on species performance from previous plantings represents an important evidence base to help guide future tropical peat swamp forest (TPSF) restoration efforts.2. We conducted a systematic review of the survival and growth of tree species planted in degraded peatlands across Southeast Asia to examine (1) species differences, (2) the impact of seedling and site treatments on survival and growth and (3) the potential use of plant functional traits to predict seedling survival and growth rates.3. Planted seedling monitoring data were compiled through a systematic review of journal articles, conference proceedings, reports, theses and unpublished datasets. In total, 94 study-sites were included, spanning three decades from 1988 to 2019, and including 141 indigenous peatland tree and palm species. Accounting for variable planting numbers and monitoring durations, we analysed three measures of survival and growth: (1) final survival weighted by the number of seedlings planted, (2) half-life, that is, duration until 50% mortality and (3) relative growth rates (RGR) corrected for initial planting height of seedlings.4. Average final survival was 62% and half-life was 33 months across all species, sites and treatments. Species differed significantly in survival and half-life. Seedling and site treatments had small effects with the strongest being higher survival of mycorrhizal fungi inoculated seedlings; lower survival, half-life and RGR when shading seedlings; and lower RGR and higher survival when fertilising seedlings. Leaf nutrient and wood density traits predicted TPSF species survival, but not half-life and RGR. RGR and half-life were negatively correlated, meaning that slower growing species survived for longer.5. Synthesis and applications. To advance tropical peat swamp reforestation requires expanding the number and replication of species planted and testing treatments by adopting control vs. treatment experimental designs. Species selection should involve slower growing species (e.g. Lophopetalum rigidum, Alstonia spatulata, Madhuca motleyana) that survive for longer and explore screening species based on functional traits associated with nutrient acquisition, flooding tolerance and recovery from fire.
  •  
6.
  • Verbruggen, Lisanne C., et al. (författare)
  • Guidance regarding COVID-19 for survivors of childhood, adolescent, and young adult cancer : A statement from the International Late Effects of Childhood Cancer Guideline Harmonization Group
  • 2020
  • Ingår i: Pediatric Blood and Cancer. - : Wiley. - 1545-5009 .- 1545-5017. ; 67:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Childhood, adolescent, and young adult (CAYA) cancer survivors may be at risk for a severe course of COVID-19. Little is known about the clinical course of COVID-19 in CAYA cancer survivors, or if additional preventive measures are warranted. We established a working group within the International Late Effects of Childhood Cancer Guideline Harmonization Group (IGHG) to summarize existing evidence and worldwide recommendations regarding evidence about factors/conditions associated with risk for a severe course of COVID-19 in CAYA cancer survivors, and to develop a consensus statement to provide guidance for healthcare practitioners and CAYA cancer survivors regarding COVID-19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy