SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saunders CM) "

Sökning: WFRF:(Saunders CM)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Figlioli, G, et al. (författare)
  • The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
  • 2019
  • Ingår i: NPJ breast cancer. - : Springer Science and Business Media LLC. - 2374-4677. ; 5, s. 38-
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Matejcic, M, et al. (författare)
  • Author Correction: Germline variation at 8q24 and prostate cancer risk in men of European ancestry
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 382-
  • Tidskriftsartikel (refereegranskat)abstract
    • The original version of this Article contained an error in the spelling of the author Manuela Gago-Dominguez, which was incorrectly given as Manuela G. Dominguez. This has now been corrected in both the PDF and HTML versions of the Article.
  •  
9.
  • Nilsen, M, et al. (författare)
  • Butyrate Levels in the Transition from an Infant- to an Adult-Like Gut Microbiota Correlate with Bacterial Networks Associated with Eubacterium Rectale and Ruminococcus Gnavus
  • 2020
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Relatively little is known about the ecological forces shaping the gut microbiota composition during infancy. Therefore, the objective of the present study was to identify the nutrient utilization- and short-chain fatty acid (SCFA) production potential of gut microbes in infants during the first year of life. Stool samples were obtained from mothers at 18 weeks of pregnancy and from infants at birth (first stool) at 3, 6, and 12-months of age from the general population-based PreventADALL cohort. We identified the taxonomic and SCFA composition in 100 mother-child pairs. The SCFA production and substrate utilization potential of gut microbes were observed by multiomics (shotgun sequencing and proteomics) on six infants. We found a four-fold increase in relative butyrate levels from 6 to 12 months of infant age. The increase was correlated to Eubacterium rectale and its bacterial network, and Faecalibacterium prausnitzii relative abundance, while low butyrate at 12 months was correlated to Ruminococcus gnavus and its associated network of bacteria. Both E. rectale and F. prausnitzii expressed enzymes needed for butyrate production and enzymes related to dietary fiber degradation, while R. gnavus expressed mucus-, fucose, and human milk oligosaccharides (HMO)-related degradation enzymes. Therefore, we believe that the presence of E. rectale, its network, and F. prausnitzii are key bacteria in the transition from an infant- to an adult-like gut microbiota with respect to butyrate production. Our results indicate that the transition from an infant- to an adult-like gut microbiota with respect to butyrate producing bacteria, occurs between 6 and 12 months of infant age. The bacteria associated with the increased butyrate ratio/levels were E. rectale and F. prausnitzii, which potentially utilize a variety of dietary fibers based on the glycoside hydrolases (GHs) expressed. R. gnavus with a negative association to butyrate potentially utilizes mucin, fucose, and HMO components. This knowledge could have future importance in understanding how microbial metabolites can impact infant health and development.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy