SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saura Anja O) "

Sökning: WFRF:(Saura Anja O)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brown, Keith S, et al. (författare)
  • Chromosomal evolution in the South American Nymphalidae.
  • 2007
  • Ingår i: Hereditas. - 1601-5223. ; 144:4, s. 137-48
  • Tidskriftsartikel (refereegranskat)abstract
    • We give the chromosome numbers of about 80 species or subspecies of Biblidinae as well as of numbers of neotropical Libytheinae (one species), Cyrestinae (4) Apaturinae (7), Nymphalinae (about 40), Limenitidinae (16) and Heliconiinae (11). Libytheana has about n=32, the Biblidinae, Apaturinae and Nymphalinae have in general n=31, the Limenitidinae have n=30, the few Argynnini n=31 and the few species of Acraeni studied have also mostly n=31. The results agree with earlier data from the Afrotropical species of these taxa. We supplement these data with our earlier observations on Heliconiini, Danainae and the Neotropical Satyroid taxa. The lepidopteran modal n=29-31 represents clearly the ancestral condition among the Nymphalidae, from which taxa with various chromosome numbers have differentiated. The overall results show that Neotropical taxa have a tendency to evolve karyotype instability, which is in stark contrast to the otherwise stable chromosome numbers that characterize both Lepidoptera and Trichoptera.
  •  
3.
  • Brown, Keith S., Jr., et al. (författare)
  • Chromosomal evolution in the South American Riodinidae (Lepidoptera Papilionoidea)
  • 2012
  • Ingår i: Hereditas. - : Springer Science and Business Media LLC. - 0018-0661 .- 1601-5223. ; 149:4, s. 128-138
  • Tidskriftsartikel (refereegranskat)abstract
    • We give the haploid chromosome numbers of 173 species or subspecies of Riodinidae as well as of 17 species or subspecies of neotropical Lycaenidae for comparison. The chromosome numbers of riodinids have thus far been very poorly known. We find that their range of variation extends from n =?9 to n =?110 but numbers above n =?31 are rare. While lepidopterans in general have stable chromosome numbers, or variation is limited at most a subfamily or genus, the entire family Riodinidae shows variation within genera, tribes and subfamilies with no single modal number. In particular, a stepwise pattern with chromosome numbers that are about even multiples is seen in several unrelated genera. We propose that this variation is attributable to the small population sizes, fragmented populations with little migration, and the behavior of these butterflies. Small and isolated riodinid populations would allow for inbreeding to take place. Newly arisen chromosomal variants could become fixed and contribute to reproductive isolation and speciation. In contrast to the riodinids, the neotropical Lycaenidae (Theclinae and Polyommatinae) conform to the modal n =?24 that characterizes the family.
  •  
4.
  • Saura, Anssi, et al. (författare)
  • Chromosome evolution in Neotropical butterflies
  • 2013
  • Ingår i: Hereditas. - : Springer Science and Business Media LLC. - 0018-0661 .- 1601-5223. ; 150:2-3, s. 26-37
  • Tidskriftsartikel (refereegranskat)abstract
    • We list the chromosome numbers for 65 species of Neotropical Hesperiidae and 104 species or subspecies of Pieridae. In Hesperiidae the tribe Pyrrhopygini have a modal n = 28, Eudaminae and Pyrgini a modal n = 31, while Hesperiinae have n = around 29. Among Pieridae, Coliadinae have a strong modal n = 31 and among Pierinae Anthocharidini are almost fixed for n = 15 while Pierini vary with n = 26 as the most common chromosome number. Dismorphiinae show wide variation. We discuss these results in the context of chromosome numbers of over 1400 Neotropical butterfly species and subspecies derived from about 3000 populations published here and in earlier papers of a series. The overall results show that many Neotropical groups are characterized by karyotype instability with several derived modal numbers or none at all, while almost all taxa of Lepidoptera studied from the other parts of the world have one of n = 29-31 as modal numbers. Possibly chromosome number changes become fixed in the course of speciation driven by biotic interactions. Population subdivision and structuring facilitate karyotype change. Factors that stabilize chromosome numbers include hybridization among species sharing the same number, migration, sexual selection and possibly the distribution of chromosomes within the nucleus.
  •  
5.
  • Stenberg, Per, et al. (författare)
  • Sequence signature analysis of chromosome identity in three Drosophila species
  • 2005
  • Ingår i: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 6:158, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: All eukaryotic organisms need to distinguish each of their chromosomes. A few protein complexes have been described that recognise entire, specific chromosomes, for instance dosage compensation complexes and the recently discovered autosome-specific Painting of Fourth (POF) protein in Drosophila. However, no sequences have been found that are chromosome-specific and distributed over the entire length of the respective chromosome. Here, we present a new, unbiased, exhaustive computational method that was used to probe three Drosophila genomes for chromosome-specific sequences. Results: By combining genome annotations and cytological data with multivariate statistics related to three Drosophila genomes we found sequence signatures that distinguish Muller's F-elements ( chromosome 4 in D. melanogaster) from all other chromosomes in Drosophila that are not attributable to differences in nucleotide composition, simple sequence repeats or repeated elements. Based on these signatures we identified complex motifs that are strongly overrepresented in the F-elements and found indications that the D. melanogaster motif may be involved in POF-binding to the F-element. In addition, the X-chromosomes of D. melanogaster and D. yakuba can be distinguished from the other chromosomes, albeit to a lesser extent. Surprisingly, the conservation of the F-element sequence signatures extends not only between species separated by approximately 55 Myr, but also linearly along the sequenced part of the F-elements. Conclusion: Our results suggest that chromosome-distinguishing features are not exclusive to the sex chromosomes, but are also present on at least one autosome ( the F-element) in Drosophila.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy