SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Saurabh Saket) "

Search: WFRF:(Saurabh Saket)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Björklund, Andreas, et al. (author)
  • Approximate counting of K-paths : Deterministic and in polynomial space
  • 2019
  • In: 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019. - 9783959771092 ; 132
  • Conference paper (peer-reviewed)abstract
    • A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)km∊−2)-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 ± ∊. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010] gave a deterministic exponential-space algorithm with running time (2e)k+O(log3 k)m log n whenever ∊−1 = kO(1). Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing randomization. Specifically, they gave a randomized O(4km∊−2)-time exponential-space algorithm. In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their work, and with a novel twist, obtain the following results. We present a deterministic 4k+O(√k(log2 k+log2 ∊−1))m log n-time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices. Additionally, we present a randomized 4k+O(log k(log k+log ∊−1))m log n-time polynomial-space algorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very simple; we only make elementary use of the probabilistic method. Thus, the algorithm by Brand et al. runs in time 4k+o(k)m whenever ∊−1 = 2o(k), while our deterministic and randomized algorithms run in time 4k+o(k)m log n whenever ∊−1 = 2o(k 4 ) and 1 ∊−1 = 2o(log k k ), respectively. Prior to our work, no 2O(k)nO(1)-time polynomial-space algorithm was known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence it immediately extends to approximate counting of graphs of bounded treewidth; in comparison, Brand et al. note that their approach is limited to graphs of bounded pathwidth.
  •  
2.
  • Lokshtanov, Daniel, et al. (author)
  • Approximate Counting of k-Paths : Simpler, Deterministic, and in Polynomial Space
  • 2021
  • In: ACM Transactions on Algorithms. - : Association for Computing Machinery (ACM). - 1549-6325 .- 1549-6333. ; 17:3
  • Journal article (peer-reviewed)abstract
    • Recently, Brand et al. [STOC 2018] gave a randomized mathcal O(4kmϵ-2-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 ± ϵ based on exterior algebra. Prior to our work, this has been the state-of-the-art. In this article, we revisit the algorithm by Alon and Gutner [IWPEC 2009, TALG 2010], and obtain the following results: •We present a deterministic 4k+ O(sk(log k+log2ϵ-1))m-time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices. •Additionally, we present a randomized 4k+mathcal O(logk(logk+logϵ-1))m-time polynomial-space algorithm. Our algorithm is simple - we only make elementary use of the probabilistic method. Here, n and m are the number of vertices and the number of edges, respectively. Additionally, our approach extends to approximate counting of other patterns of small size (such as q-dimensional p-matchings).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view