SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Savina Irina N) "

Sökning: WFRF:(Savina Irina N)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dainiak, Maria B, et al. (författare)
  • Gelatin-fibrinogen cryogel dermal matrices for wound repair: Preparation, optimisation and in vitro study.
  • 2010
  • Ingår i: Biomaterials. - : Elsevier BV. - 1878-5905 .- 0142-9612. ; 31, s. 67-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Macroporous sponge-like gelatin-fibrinogen (Gl-Fg) scaffolds cross-linked with different concentrations (0.05-0.5%) of glutaraldehyde (GA) were produced using cryogelation technology, which allows for the preparation of highly porous scaffolds without compromising their mechanical properties, and is a more cost-efficient process than freeze-drying. The produced Gl-Fg-GA(X) scaffolds had a uniform interconnected open porous structure with a porosity of up to 90-92% and a pore size distribution of 10-120mum. All of the obtained cryogels were elastic and mechanically stable, except for the Gl-Fg-GA(0.05) scaffolds. Swelling kinetics and degradation rate, but not the porous structure of the cryogels, were strongly dependent on the degree of cross-linking. A ten-fold increase in the degree of cross-linking resulted in an almost 80-fold decrease in the rate of degradation in a solution of protease. Cryogels were seeded with primary dermal fibroblasts and the densities observed on the surface, plus the expression levels of collagen types I and III observed 5 days post-seeding, were similar to those observed on a control dermal substitute material, Integra((R)). Fibroblast proliferation and migration within the scaffolds were relative to the GA content. Glucose consumption rate was 3-fold higher on Gl-Fg-GA(0.1) than on Gl-Fg-GA(0.5) cryogels 10 days post-seeding. An enhanced cell motility on cryogels with reducing GA crosslinking was obtained after long time culture. Particularly marked cell infiltration was seen in gels using 0.1% GA as a crosslinker. The scaffold started to disintegrate after 42 days of in vitro culturing. The described in vitro studies demonstrated good potential of Gl-Fg-GA(0.1) scaffolds as matrices for wound healing.
  •  
2.
  • Ivanov, Alexander, et al. (författare)
  • Evaluation of boronate-containing polymer brushes and gels as substrates for carbohydrate-mediated adhesion and cultivation of animal cells.
  • 2010
  • Ingår i: Colloids and Surfaces. B, Biointerfaces. - : Elsevier BV. - 1873-4367 .- 0927-7765. ; 75, s. 510-519
  • Tidskriftsartikel (refereegranskat)abstract
    • Boronate-containing thin polyacrylamide gels (B-Gel), polymer brushes (B-Brush) and chemisorbed organosilane layers (B-COSL) were prepared on the surface of glass slides and studied as substrates for carbohydrate-mediated cell adhesion. B-COSL- and B-Brush-modified glass samples exhibited multiple submicron structures densely and irregularly distributed on the glass surface, as found by scanning electron microscopy and atomic force microscopy. B-Gel was ca. 0.1mm thick and contained pores with effective size of 1-2mum in the middle and of 5-20mum on the edges of the gel sample as found by confocal laser scanning microscopy. Evidence for the presence of phenylboronic acid in the samples was given by time-of-flight secondary ion mass-spectrometry (ToF SIMS), contact angle measurements performed in the presence of fructose, and staining with Alizarin Red S dye capable of formation specific, fluorescent complexes with boronic acids. A comparative study of adhesion and cultivation of animal cells on the above substrates was carried out using murine hybridoma M2139 cell line as a model. M2139 cells adhered to the substrates in the culture medium without glucose or sodium pyruvate at pH 8.0, and then were cultivated in the same medium at pH 7.2 for 4 days. It was found that the substrates of B-Brush type were superior both regarding cell adhesion and viability of the adhered cells, among the substrates studied. MTT assay confirmed proliferation of M2139 cells on B-Brush substrates. Some cell adhesion was also registered in the macropores of B-Gel substrate. The effects of surface microstructure of the boronate-containing polymers on cell adhesion are discussed. Transparent glass substrates grafted with boronate-containing copolymers offer good prospects for cell adhesion studies and development of cell-based assays.
  •  
3.
  • Savina, Irina N., et al. (författare)
  • Biomimetic Macroporous Hydrogels: Protein Ligand Distribution and Cell Response to the Ligand Architecture in the Scaffold
  • 2009
  • Ingår i: Journal of Biomaterials Science. Polymer Edition. - 0920-5063. ; 20:12, s. 1781-1795
  • Tidskriftsartikel (refereegranskat)abstract
    • Macroporous hydrogels (MHs), cryogels, are a new type of biomaterials for tissue engineering that can be produced from any natural or synthetic polymer that forms a gel. Synthetic MHs are rendered bioactive by surface or bulk modifications with extracellular matrix components. In this study, cell response to the architecture of protein ligands, bovine type-I collagen (CG) and human fibrinogen (Fg), immobilised using different methods on poly(2-hydroxyethyl methacrylate) (pHEMA) macroporous hydrogels (MHs) was analysed. Bulk modification was performed by cross-linking cryo-co-polymerisation of HEMA and poly(ethylene glycol) diacrylate (PEGA) in the presence of proteins (CG/ pHEMA and Fg/pHEMA MHs). The polymer surface was modified by covalent immobilisation of the proteins to the active epoxy (ep) groups present on pHEMA after hydrogel fabrication (CG-epHEMA and Fg-epHEMA MHs). The concentration of proteins in protein/pHEMA and protein-epHEMA MHs was 80-85 and 130-140 mu g/ml hydrogel, respectively. It was demonstrated by immunostaining and confocal laser scanning microscopy that bulk modification resulted in spreading of CG in the polymer matrix and spot-like distribution of Fg. On the contrary, surface modification resulted in spot-like distribution of CG and uniform spreading of Fg, which evenly coated the surface. Proliferation rate of fibroblasts was higher on MHs with even distribution of the ligands, i.e., on Fg-epHEMA and CG/ pHEMA. After 30 days of growth, fibroblasts formed several monolayers and deposited extracellular matrix filling the pores of these MHs. The best result in terms of cell proliferation was obtained on Fg-epHEMA. The ligands displayed on surface of these scaffolds were in native conformation, while in bulk-modified CG/ pHEMA MHs most of the proteins were buried inside the polymer matrix and were less accessible for interactions with specific antibodies and cells. The method used for MH modification with bioligands strongly affects spatial distribution, density and conformation of the ligand on the scaffold surface, which, in turn, influence cell-surface interactions. The optimal type of modification varies depending on intrinsic properties of proteins and MHs. (C) Koninklijke Brill NV, Leiden, 2009
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy