SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Savitch Leonid V.) "

Sökning: WFRF:(Savitch Leonid V.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kurepin, Leonid V., et al. (författare)
  • Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation
  • 2013
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 14:6, s. 12729-12763
  • Forskningsöversikt (refereegranskat)abstract
    • Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways.
  •  
2.
  • Huner, Norman P A, et al. (författare)
  • Photoprotection of Photosystem II: Reaction center quenching versus antenna quenching
  • 2006
  • Ingår i: Photoprotection, Photoinhibition, Gene Regulation and Environment. - : Springer. - 9781402035647 ; , s. 155-174
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Photoprotection, Photoinhibition, Gene Regulation, and Environment examines the processes whereby plants monitor environmental conditions and orchestrate their response to change, an ability paramount to the life of all plants. "Excess light", absorbed by the light-harvesting systems of photosynthetic organisms, is an integrative indicator of the environment, communicating the presence of intense light and any conditions unfavorable for growth and photosynthesis. Key plant responses are photoprotection and photoinhibition. In this volume, the dual role of photoprotective responses in the preservation of leaf integrity and in redox signaling networks modulating stress acclimation, growth, and development is addressed. In addition, the still unresolved impact of photoinhibition on plant survival and productivity is discussed. Specific topics include dissipation of excess energy via thermal and other pathways, scavenging of reactive oxygen by antioxidants, proteins key to photoprotection and photoinhibition, peroxidation of lipids, as well as signaling by reactive oxygen, lipid-derived messengers, and other messengers that modulate gene expression. Approaches include biochemical, physiological, genetic, molecular, and field studies, addressing intense visible and ultraviolet light, winter conditions, nutrient deficiency, drought, and salinity. This book is directed toward advanced undergraduate students, graduate students, and researchers interested in Plant Ecology, Stress Physiology, Plant Biochemistry, Integrative Biology, and Photobiology.
  •  
3.
  • Ivanov, Alexander G, et al. (författare)
  • Acclimation to temperature and irradiance modulates PSII charge recombination.
  • 2006
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793. ; 580:11, s. 2797-802
  • Tidskriftsartikel (refereegranskat)abstract
    • Acclimation of wild type and the chlorina F2 mutant of barley to either high light or low temperature results in a 2- to 3-fold increase in non-photochemical quenching which occurred independently of either energy-dependent quenching (qE), xanthophyll cycle-mediated antenna quenching or state transitions. Results of in vivo thermoluminescence measurements used to address this conundrum indicated that excitation pressure regulates the temperature gap for Click to view the MathML source and Click to view the MathML source charge recombinations within photosystem II reaction centers. This is discussed in terms of photoprotection through non-radiative charge recombination.
  •  
4.
  • Ivanov, Alexander G., et al. (författare)
  • The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation
  • 2022
  • Ingår i: Planta. - : Springer. - 0032-0935 .- 1432-2048. ; 255:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Main conclusion: Decreased PG constrains PSI activity due to inhibition of transcript and polypeptide abundance of light-harvesting and reaction center polypeptides generating a reversible, yellow phenotype during cold acclimation of pgp1.Cold acclimation of the Arabidopsis pgp1 mutant at 5 °C resulted in a pale-yellow phenotype with abnormal chloroplast ultrastructure compared to its green phenotype upon growth at 20 °C despite a normal cold-acclimation response at the transcript level. In contrast, wild type maintained its normal green phenotype and chloroplast ultrastructure irrespective of growth temperature. In contrast to cold acclimation of WT, growth of pgp1 at 5 °C limited the accumulation of Lhcbs and Lhcas assessed by immunoblotting. However, a novel 43 kD polypeptide of Lhcb1 as well as a 29 kD polypeptide of Lhcb3 accumulated in the soluble fraction which was absent in the thylakoid membrane fraction of cold-acclimated pgp1 which was not observed in WT. Cold acclimation of pgp1 destabilized the Chl–protein complexes associated with PSI and predisposed energy distribution in favor of PSII rather than PSI compared to the WT. Functionally, in vivo PSI versus PSII photochemistry was inhibited in cold-acclimated pgp1 to a greater extent than in WT relative to controls. Greening of the pale-yellow pgp1 was induced when cold-acclimated pgp1 was shifted from 5 to 20 °C which resulted in a marked decrease in excitation pressure to a level comparable to WT. Concomitantly, Lhcbs and Lhcas accumulated with a simultaneous decrease in the novel 43 and 29kD polypeptides. We conclude that the reduced levels of phosphatidyldiacylglycerol in the pgp1 limit the capacity of the mutant to maintain the structure and function of its photosynthetic apparatus during cold acclimation. Thus, maintenance of normal thylakoid phosphatidyldiacylglycerol levels is essential to stabilize the photosynthetic apparatus during cold acclimation.
  •  
5.
  • Savitch, Leonid V., et al. (författare)
  • Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent
  • 2010
  • Ingår i: Plant and Cell Physiology. - : Oxford University Press (OUP). - 0032-0781 .- 1471-9053. ; 51:9, s. 1555-1570
  • Tidskriftsartikel (refereegranskat)abstract
    • Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer [summer; 25C/250 photon flux denisty (PFD)], autumn (autumn; 15C/250 PFD) or winter conditions (winter; 5C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETRCO2) was 40 lower in both autumn and winter pine when compared with the summer pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETRexcess) not used for carbon assimilation within the total ETRJf increased by 30 in both autumn and winter pine. In autumn pine acclimated to 15C, the increased amounts of excess electrons were directed equally to 21kPa O-2-dependent and 2kPa O-2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry ((PSII)), thermally dissipated through (NPQ) and dissipated by additional quenching mechanism(s) ((f,D)) were similar to those in summer pine. In contrast, in winter needles acclimated to 5C, 60 of photosynthetically generated excess electrons were utilized through the 2kPa O-2-dependent electron sink and only 15 by the photorespiratory (21kPa O-2) electron pathway. Needles exposed to winter conditions led to a 3-fold lower (PSII), only a marginal increase in (NPQ) and a 2-fold higher (f,D), which was O-2 dependent compared with the summer and autumn pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O-2 dependent.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy