SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sazonov D) "

Sökning: WFRF:(Sazonov D)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Korablev, O., et al. (författare)
  • The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
  • 2018
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 214:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described.
  •  
3.
  •  
4.
  • Kholodnaya, G. E., et al. (författare)
  • Pulsed electron beam propagation in argon and nitrogen gas mixture
  • 2015
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 22:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N-2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 +/- 3, 300 +/- 3, and 50 +/- 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively. (C) 2015 AIP Publishing LLC.
  •  
5.
  • Kholodnaya, G., et al. (författare)
  • Study of the conditions for the effective initiation of plasma-chemical treatment of flue gas under the influence of a pulsed electron beam
  • 2020
  • Ingår i: Laser and particle beams (Print). - : CAMBRIDGE UNIV PRESS. - 0263-0346 .- 1469-803X. ; 38:3, s. 197-203
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the results of comprehensive studies of the efficiency of a pulsed electron beam transmission through a mixture of gases: nitrogen (83%), carbon dioxide (14%), and oxygen (2.6%) in the presence of ash and water vapor. The studied concentrations correspond to the concentrations of nitrogen, oxygen, and carbon dioxide in flue gas. The pressure and concentration of water vapor and ash in the drift chamber varied (375, 560, and 750 Torr; humidity 15 +/- 5% and 50 +/- 15%). The charge dissipation of a pulsed electron beam in the gas mixture in the presence of ash and water vapor was investigated, as well as the effect of the concentration of water vapor and ash on the geometric profile of the pulsed electron beam.
  •  
6.
  • Konusov, F. V., et al. (författare)
  • Optical properties of carbon-containing titanium oxide nanocomposites obtained by the pulsed plasma chemical method
  • 2017
  • Ingår i: Fullerenes, nanotubes, and carbon nanostructures. - : TAYLOR & FRANCIS INC. - 1536-383X .- 1536-4046. ; 25:6, s. 343-347
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the results of an experimental investigation on the optical properties of the TiO2 and TixCyOz nanopowders, produced by the pulsed plasma chemical method. Pulsed plasma chemical synthesis is realized on the laboratory stand, including a plasma chemical reactor (6 l) and TEA-500 electron accelerator. The parameters of the electron beam are as follows: 400-450 keV electron energy, 60 ns half-amplitude pulse duration, up to 200 J pulse energy, and 5 cm beam diameter. In TiO2 sample, obtained using the pulsed plasma chemical method, the particles can be divided into two groups: 100-500 nm large spherical particles and tiny complex particles (sized less than 100 nm). For TixCyOz sample, the morphology of the particles is mainly presented with irregular fragment shape. The average size of the particles is ranged from 200 to 300 nm. The band gap for all synthesized samples is within 2.94-3.35 eV.
  •  
7.
  • Sazonov, R. V., et al. (författare)
  • Pulsed plasma chemical synthesis of carbon-containing titanium oxide-based composite
  • 2017
  • Ingår i: Fullerenes, nanotubes, and carbon nanostructures. - : TAYLOR & FRANCIS INC. - 1536-383X .- 1536-4046. ; 25:9, s. 526-530
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon-containing titanium oxide-based composite was first obtained using a pulsed plasma chemical method. The composite was obtained from the following reagents: TiCl4, CH4, and O-2. The physical and chemical properties of the TixCyOz composite powders were studied (morphology, chemical, elemental and phase composition). The presence of spherical particles and the cubic and prismatic particles were typical for the synthesised carbon-containing titanium oxide-based composites. The large particles are observed (the average size exceeds 150nm) and smaller particles (the average size is 15-30nm). The presence of the dense layer of amorphous carbon (10-15nm thick) around particles is typical for the composites. The peak with a maximum of 1080cm(-1) is registered in IR absorption spectrum of the TixCyOz synthesised composite. The presence of IR radiation in this region of the spectrum is typical for the deformation of atomic oscillations in the Ti-O-C bond, which indicates that carbon and titanium in the composite are bound through oxygen. The content of the defined amount of titanium carbide has not been detected.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy