SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scarlat Nicolae) "

Sökning: WFRF:(Scarlat Nicolae)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Englund, Oskar, et al. (författare)
  • Beneficial land use change : Strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture
  • 2019
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Society faces the double challenge of addressing negative impacts of current land use, while increasing biomass production to meet the future demands for food, materials and bioenergy. Potential impacts of increasing the biomass supply are subject to debate. In the discourse, land use change (LUC) has often been considered as negative, referring to impacts of deforestation and cropland expansion. At the same time, LUC is considered necessary for mitigating impacts of existing land use. Strategic establishment of suitable crop cultivation systems in agricultural landscapes can mitigate environmental impacts of current crop production, while providing biomass for the bioeconomy. Here, we explore the potential for such “beneficial LUC” in EU28, based on high-resolution land use modeling. First, we map and quantify the degree of accumulated soil organic carbon losses, wind and water erosion, nitrogen emissions to water, and recurring flooding, in ~81.000 individual sub-watersheds in EU28. We then estimate the effectiveness in mitigating these impacts through establishment of perennial plants, in each sub-watershed. Finally, we identify areas where perennialization may be particularly beneficial from an environmental point of view. The results indicate that there is a substantial potential for effective mitigation, regarding all the assessed impacts. Depending on criteria selection, some 10-46% of the land used for annual crop production in EU28 is located in landscapes that could be considered priority areas for beneficial LUC. While some recent policy development is favorable for promoting beneficial LUC, the effectiveness could be increased by seeking synergies between climate change mitigation, energy security, and other societal goals. One way forward can be to identify and promote options for biomass production in the context of SDG implementation.
  •  
2.
  • Englund, Oskar, et al. (författare)
  • Beneficial land-use change in Europe : deployment scenarios for multifunctional riparian buffers and windbreaks
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The land sector needs to increase biomass production to meet multiple demands while reducing negative land use impacts and transitioning from being a source to being a sink of carbon. The new Common Agricultural Policy of the EU (CAP) steers towards a more needs-based, targeted approach to addressing multiple environmental and climatic objectives, in coherence with other EU policies. In relation to this, new schemes are developed to offer farmers direct payments to adapt practices beneficial for climate, water, soil, air and biodiversity. Multifunctional biomass production systems have potential to reduce environmental impacts from agriculture while maintaining or increasing biomass production for the bioeconomy across Europe. Here, we present the first attempt to model the deployment of two such systems, riparian buffers and windbreaks, across >81.000 landscapes in Europe (EU27 + UK), aiming to quantify the resulting ecosystem services and environmental benefits, considering three deployment scenarios with different incentives for implementation. We found that these multifunctional biomass production systems can reduce N emissions to water and soil loss by wind erosion, respectively, down to a “low” impact level all over Europe, while simultaneously providing substantial environmental co-benefits, using less than 1% of the area under annual crops in the EU. The GHG emissions savings of utilizing the biomass produced in these systems for replacing fossil alternatives, combined with the increases in soil organic carbon, correspond to 1-1,4% of total GHG emissions in EU28. The introduction of “eco-schemes” in the new CAP may resolve some of the main barriers to implementation of large-scale multifunctional biomass production systems. Increasing the knowledge of these opportunities among all EU member states, before designing and introducing country-specific Eco-scheme options in the new CAP, is critical.
  •  
3.
  • Englund, Oskar, et al. (författare)
  • Beneficial land use change: Strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture
  • 2020
  • Ingår i: Global Environmental Change. - : Elsevier BV. - 0959-3780 .- 1872-9495. ; 60
  • Tidskriftsartikel (refereegranskat)abstract
    • Society faces the double challenge of increasing biomass production to meet the future demands for food, materials and bioenergy, while addressing negative impacts of current (and future) land use. In the discourse, land use change (LUC) has often been considered as negative, referring to impacts of deforestation and expansion of biomass plantations. However, strategic establishment of suitable perennial production systems in agricultural landscapes can mitigate environmental impacts of current crop production, while providing biomass for the bioeconomy. Here, we explore the potential for such “beneficial LUC” in EU28. First, we map and quantify the degree of accumulated soil organic carbon losses, soil loss by wind and water erosion, nitrogen emissions to water, and recurring floods, in ∼81.000 individual landscapes in EU28. We then estimate the effectiveness in mitigating these impacts through establishment of perennial plants, in each landscape. The results indicate that there is a substantial potential for effective impact mitigation. Depending on criteria selection, 10–46% of the land used for annual crop production in EU28 is located in landscapes that could be considered priority areas for beneficial LUC. These areas are scattered all over Europe, but there are notable “hot-spots” where priority areas are concentrated, e.g., large parts of Denmark, western UK, The Po valley in Italy, and the Danube basin. While some policy developments support beneficial LUC, implementation could benefit from attempts to realize synergies between different Sustainable Development Goals, e.g., “Zero hunger”, “Clean water and sanitation”, “Affordable and Clean Energy”, “Climate Action”, and “Life on Land”.
  •  
4.
  • Englund, Oskar, 1982, et al. (författare)
  • Large-scale deployment of grass in crop rotations as a multifunctional climate mitigation strategy
  • 2023
  • Ingår i: GCB Bioenergy. - : Wiley. - 1757-1707 .- 1757-1693. ; 15:2, s. 166-184
  • Tidskriftsartikel (refereegranskat)abstract
    • The agriculture sector can contribute to climate change mitigation by reducing its own greenhouse gas (GHG) emissions, sequestering carbon in vegetation and soils, and providing biomass to substitute for fossil fuels and other GHG-intensive products. The sector also needs to address water, soil, and biodiversity impacts caused by historic and current practices. Emerging EU policies create incentives for cultivation of perennial plants that provide biomass along with environmental benefits. One such option, common in northern Europe, is to include grass in rotations with annual crops to provide biomass while remediating soil organic carbon (SOC) losses and other environmental impacts. Here, we apply a spatially explicit model on >81,000 sub-watersheds in EU27 + UK (Europe) to explore the effects of widespread deployment of such systems. Based on current accumulated SOC losses in individual sub-watersheds, the model identifies and quantifies suitable areas for increased grass cultivation and corresponding biomass- and protein supply, SOC sequestration, and reductions in nitrogen emissions to water as well as wind and water erosion. The model also provides information about possible flood mitigation. The results indicate a substantial climate mitigation potential, with combined annual GHG savings from soil-carbon sequestration and displacement of natural gas with biogas from grass-based biorefineries, equivalent to 13%–48% of current GHG emissions from agriculture in Europe. The environmental co-benefits are also notable, in some cases exceeding the estimated mitigation needs. Yield increases for annual crops in modified rotations mitigate the displacement effect of increasing grass cultivation. If the grass is used as feedstock in lieu of annual crops, the displacement effect can even be negative, that is, a reduced need for annual crop production elsewhere. Incentivizing widespread deployment will require supportive policy measures as well as new uses of grass biomass, for example, as feedstock for green biorefineries producing protein concentrate, biofuels, and other bio-based products.
  •  
5.
  • Englund, Oskar, et al. (författare)
  • Large-scale deployment of in-rotation grass cultivation as a multifunctional soil climate mitigation strategy
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The agricultural sector can contribute to climate change mitigation by reducing its own greenhouse gas (GHG) emissions and sequestering atmospheric carbon in vegetation and soils, and by providing biomass for substituting fossil fuels and other GHG intensive products in the energy, industry and transport sectors. New policies at EU level provide incentives for more sustainable land use practices, for example, cultivation systems using perennial plants that provide biomass for food, bioenergy and other biobased products along with land carbon sequestration and other environmental benefits. Based on spatial modelling across more than 81,000 landscapes in Europe, we find that introduction of grass-clover leys into rotations with annual crops could result in soil organic carbon sequestration corresponding to 5-10% of total current GHG emissions from agriculture in EU27+UK, annually until 2050. The combined annual GHG savings from soil carbon sequestration and use of biogas produced in connection to grass-based biorefineries equals 13-48% of current GHG emissions from agriculture. The assessed environmental co-benefits (reduced wind and water erosion, reduced nitrogen emissions to water, and mitigation of impacts associated with flooding) are considerable. Besides policy instruments, new markets for grass biomass, e.g., as feedstock for producing biofuels and protein concentrate, can incentivize widespread deployment of in-rotation grass cultivation.
  •  
6.
  • Englund, Oskar, et al. (författare)
  • Strategic deployment of riparian buffers and windbreaks in Europe can co-deliver biomass and environmental benefits
  • 2021
  • Ingår i: Communications Earth & Environment. - : Springer Nature. - 2662-4435. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the scope of the new Common Agricultural Policy of the European Union, in coherence with other EU policies, new incentives are developed for farmers to deploy practices that are beneficial for climate, water, soil, air, and biodiversity. Such practices include establishment of multifunctional biomass production systems, designed to reduce environmental impacts while providing biomass for food, feed, bioenergy, and other biobased products. Here, we model three scenarios of large-scale deployment for two such systems, riparian buffers and windbreaks, across over 81,000 landscapes in Europe, and quantify the corresponding areas, biomass output, and environmental benefits. The results show that these systems can effectively reduce nitrogen emissions to water and soil loss by wind erosion, while simultaneously providing substantial environmental co-benefits, having limited negative effects on current agricultural production. This kind of beneficial land-use change using strategic perennialization is important for meeting environmental objectives while advancing towards a sustainable bioeconomy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy