SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schöll Eva) "

Sökning: WFRF:(Schöll Eva)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elshaari, Ali W., et al. (författare)
  • Strain-Tunable Quantum Integrated Photonics
  • 2018
  • Ingår i: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 18:12, s. 7969-7976
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor quantum dots are crucial parts of the photonic quantum technology toolbox because they show excellent single-photon emission properties in addition to their potential as solid-state qubits. Recently, there has been an increasing effort to deterministically integrate single semiconductor quantum dots into complex photonic circuits. Despite rapid progress in the field, it remains challenging to manipulate the optical properties of waveguide-integrated quantum emitters in a deterministic, reversible, and nonintrusive manner. Here we demonstrate a new class of hybrid quantum photonic circuits combining III V semiconductors, silicon nitride, and piezoelectric crystals. Using a combination of bottom-up, top-down, and nanomanipulation techniques, we realize strain tuning of a selected, waveguide-integrated, quantum emitter and a planar integrated optical resonator. Our findings are an important step toward realizing reconfigurable quantum-integrated photonics, with full control over the quantum sources and the photonic circuit.
  •  
2.
  • Errando-Herranz, Carlos, 1989-, et al. (författare)
  • Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters
  • 2021
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 8:4, s. 1069-1076
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient on-chip integration of single-photon emitters imposes a major bottleneck for applications of photonic integrated circuits in quantum technologies. Resonantly excited solid-state emitters are emerging as near-optimal quantum light sources, if not for the lack of scalability of current devices. Current integration approaches rely on cost-inefficient individual emitter placement in photonic integrated circuits, rendering applications impossible. A promising scalable platform is based on two-dimensional (2D) semiconductors. However, resonant excitation and single-photon emission of waveguide-coupled 2D emitters have proven to be elusive. Here, we show a scalable approach using a silicon nitride photonic waveguide to simultaneously strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode. We demonstrate the guiding of single photons in the photonic circuit by measuring second-order autocorrelation of g((2))(0) = 0.150 +/- 0.093 and perform on-chip resonant excitation, yielding a g((2))(0) = 0.377 +/- 0.081. Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
  •  
3.
  • Haffouz, Sofiane, et al. (författare)
  • Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires : The Role of the Photonic Waveguide
  • 2018
  • Ingår i: Nano letters (Print). - : AMER CHEMICAL SOC. - 1530-6984 .- 1530-6992. ; 18:5, s. 3047-3052
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.
  •  
4.
  • Hanschke, Lukas, et al. (författare)
  • Coherent scattering: either sub-natural linewidth or anti-bunched light
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Epitaxial quantum dots have emerged as one of the best single–photon sources, not only for applications in photonic quantum technologies but also for testing fundamental properties of quantum optics. One intriguing observation in this area is the emission of photons with subnatural–linewidth from a two-level system under resonant continuous wave excitation. In particular, an open question is whether these subnatural–linewidth photons exhibit simultaneously single–photon characteristics, i.e. show antibunching as a signature of single-photon emission. Here, we demonstrate that this simultaneous observation of subnatural–linewidth and single photoncharacter is not possible with simple resonant excitation. First, we independently confirm single–photon character and subnatural–linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our experimental work is consistent with recent theoretical findings, and can be explained by a fundamental model considering higher-order photon correlations.
  •  
5.
  • Hanschke, Lukas, et al. (författare)
  • Origin of Antibunching in Resonance Fluorescence
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 125:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Resonance fluorescence has played a major role in quantum optics with predictions and later experimental confirmation of nonclassical features of its emitted light such as antibunching or squeezing. In the Rayleigh regime where most of the light originates from the scattering of photons with subnatural linewidth, antibunching would appear to coexist with sharp spectral lines. Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation. Using an epitaxial quantum dot for the two-level system, we independently confirm the single-photon character and subnatural linewidth by demonstrating antibunching in a Hanbury Brown and Twiss type setup and using high-resolution spectroscopy, respectively. However, when filtering the coherently scattered photons with filter bandwidths on the order of the homogeneous linewidth of the excited state of the two-level system, the antibunching dip vanishes in the correlation measurement. Our observation is explained by antibunching originating from photon-interferences between the coherent scattering and a weak incoherent signal in a skewed squeezed state. This prefigures schemes to achieve simultaneous subnatural linewidth and antibunched emission.
  •  
6.
  • Jadhav, Santosh, et al. (författare)
  • A walk through tau therapeutic strategies
  • 2019
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 7:1
  • Forskningsöversikt (refereegranskat)abstract
    • Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer's disease and related human tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains. The main therapeutic foci in existing clinical trials are on Alzheimer's disease, progressive supranuclear palsy and non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain disorders. First efficacy data from clinical trials will be available by the end of this decade.
  •  
7.
  • Lettner, Thomas, et al. (författare)
  • GaAs Quantum Dot in a Parabolic Microcavity Tuned to Rb-87 D-1
  • 2020
  • Ingår i: ACS Photonics. - : AMER CHEMICAL SOC. - 2330-4022. ; 7:1, s. 29-35
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop a structure to efficiently extract photons emitted by a GaAs quantum dot tuned to rubidium. For this, we employ a broadband microcavity with a curved gold backside mirror that we fabricate by a combination of photoresist reflow, dry reactive ion etching in an inductively coupled plasma, and selective wet chemical etching. Precise reflow and etching control allows us to achieve a parabolic backside mirror with a short focal distance of 265 nm. The fabricated structures yield a predicted (measured) collection efficiency of 63% (12%), an improvement by more than 1 order of magnitude compared to unprocessed samples. We then integrate our quantum dot parabolic microcavities onto a piezoelectric substrate capable of inducing a large in-plane biaxial strain. With this approach, we tune the emission wavelength by 0.5 nm/kV, in a dynamic, reversible, and linear way, to the rubidium D-1 line (795 nm).
  •  
8.
  • Mattsson, Brady J., et al. (författare)
  • Enhancing monitoring and transboundary collaboration for conserving migratory species under global change : The priority case of the red kite
  • 2022
  • Ingår i: Journal of Environmental Management. - : Elsevier BV. - 0301-4797. ; 317
  • Forskningsöversikt (refereegranskat)abstract
    • Calls for urgent action to conserve biodiversity under global change are increasing, and conservation of migratory species in this context poses special challenges. In the last two decades the Convention on the Conservation of Migratory Species of Wild Animals (CMS) has provided a framework for several subsidiary instruments including action plans for migratory bird species, but the effectiveness and transferability of these plans remain unclear. Such laws and policies have been credited with positive outcomes for the conservation of migratory species, but the lack of international coordination and on-ground implementation pose major challenges. While research on migratory populations has received growing attention, considerably less emphasis has been given to integrating ecological information throughout the annual cycle for examining strategies to conserve migratory species at multiple scales in the face of global change. We fill this gap through a case study examining the ecological status and conservation of a migratory raptor and facultative scavenger, the red kite (Milvus milvus), whose current breeding range is limited to Europe and is associated with agricultural landscapes and restricted to the temperate zone. Based on our review, conservation actions have been successful at recovering red kite populations within certain regions. Populations however remain depleted along the southern-most edge of the geographic range where many migratory red kites from northern strongholds overwinter. This led us to a forward-looking and integrated strategy that emphasizes international coordination involving researchers and conservation practitioners to enhance the science-policy-action interface. We identify and explore key issues for conserving the red kite under global change, including enhancing conservation actions within and outside protected areas, recovering depleted populations, accounting for climate change, and transboundary coordination in adaptive conservation and management actions. The integrated conservation strategy is sufficiently general such that it can be adapted to inform conservation of other highly mobile species subject to global change.
  •  
9.
  • Schöll, Eva, et al. (författare)
  • Crux of Using the Cascaded Emission of a Three-Level Quantum Ladder System to Generate Indistinguishable Photons
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 125:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the degree of indistinguishability of cascaded photons emitted from a three-level quantum ladder system; in our case the biexciton-exciton cascade of semiconductor quantum dots. For the three-level quantum ladder system we theoretically demonstrate that the indistinguishability is inherently limited for both emitted photons and determined by the ratio of the lifetimes of the excited and intermediate states. We experimentally confirm this finding by comparing the quantum interference visibility of noncascaded emission and cascaded emission from the same semiconductor quantum dot. Quantum optical simulations produce very good agreement with the measurements and allow us to explore a large parameter space. Based on our model, we propose photonic structures to optimize the lifetime ratio and overcome the limited indistinguishability of cascaded photon emission from a three-level quantum ladder system.
  •  
10.
  • Schöll, Eva, et al. (författare)
  • Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability
  • 2019
  • Ingår i: Nano letters (Print). - : AMER CHEMICAL SOC. - 1530-6984 .- 1530-6992. ; 19:4, s. 2404-2410
  • Tidskriftsartikel (refereegranskat)abstract
    • Photonic quantum technologies call for scalable quantum light sources that can be integrated, while providing the end user with single and entangled photons on demand. One promising candidate is strain free GaAs/A1GaAs quantum dots obtained by aluminum droplet etching. Such quantum dots exhibit ultra low multi-photon probability and an unprecedented degree of photon pair entanglement. However, different to commonly studied InGaAs/GaAs quantum dots obtained by the Stranski-Krastanow mode, photons with a near-unity indistinguishability from these quantum emitters have proven to be elusive so far. Here, we show on-demand generation of near-unity indistinguishable photons from these quantum emitters by exploring pulsed resonance fluorescence. Given the short intrinsic lifetime of excitons and trions confined in the GaAs quantum dots, we show single photon indistinguishability with a raw visibility of V-raw = (95.0(-6.1)(+5.0))%, without the need for Purcell enhancement. Our results represent a milestone in the advance of GaAs quantum dots by demonstrating the final missing property standing in the way of using these emitters as a key component in quantum communication applications, e.g., as quantum light sources for quantum repeater architectures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy