SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schaaf B) "

Sökning: WFRF:(Schaaf B)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Fomalont, E. B., et al. (författare)
  • THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW
  • 2015
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 808:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to similar to 15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from 2014 September to late November, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C 138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at similar to 350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
  •  
3.
  • van Haarlem, M. P., et al. (författare)
  • LOFAR : The LOw-Frequency ARray
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 556, s. 1-53
  • Tidskriftsartikel (refereegranskat)abstract
    • LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency range from 10–240 MHz and provides a number of unique observing capabilities. Spreading out from a core located near the village of Exloo in the northeast of the Netherlands, a total of 40 LOFAR stations are nearing completion. A further five stations have been deployed throughout Germany, and one station has been built in each of France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR achieves unparalleled sensitivity and angular resolution in the low-frequency radio regime. The LOFAR facilities are jointly operated by the International LOFAR Telescope (ILT) foundation, as an observatory open to the global astronomical community. LOFAR is one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. LOFAR’s new capabilities, techniques and modus operandi make it an important pathfinder for the Square Kilometre Array (SKA). We give an overview of the LOFAR instrument, its major hardware and software components, and the core science objectives that have driven its design. In addition, we present a selection of new results from the commissioning phase of this new radio observatory.
  •  
4.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
5.
  • Bender, A. N., et al. (författare)
  • Galaxy cluster scaling relations measured with APEX-SZ
  • 2016
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 460:4, s. 3432-3446
  • Tidskriftsartikel (refereegranskat)abstract
    • We present thermal Sunyaev-Zel'dovich effect (SZE) measurements for 42 galaxy clusters observed at 150 GHz with the APEX-SZ experiment. For each cluster, we model the pressure profile and calculate the integrated Comptonization Y to estimate the total thermal energy of the intraclustermedium (ICM). We compare the measured Y values to X-ray observables of the ICM from the literature (cluster gas mass M-gas, temperature T-X, and Y-X = MgasTX) that relate to total cluster mass. We measure power-law scaling relations, including an intrinsic scatter, between the SZE and X-ray observables for three subsamples within the set of 42 clusters that have uniform X-ray analysis in the literature. We observe that differences between these X-ray analyses introduce significant variance into the measured scaling relations, particularly affecting the normalization. For all three subsamples, we find results consistent with a selfsimilarmodel of cluster evolution dominated by gravitational effects. Comparing to predictions from numerical simulations, these scaling relations prefer models that include cooling and feedback in the ICM. Lastly, we measure an intrinsic scatter of similar to 28 per cent in the Y - Y-X scaling relation for all three subsamples.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Schwan, D., et al. (författare)
  • APEX-SZ: The Atacama Pathfinder EXperiment Sunyaev-Zel'dovich Instrument
  • 2012
  • Ingår i: The Messenger. ; 147, s. 7-12
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The APEX–SZ instrument was a millimetre-wave (150 GHz) cryogenic receiverfor the APEX telescope designedto observe galaxy clusters via theSunyaev–Zel’dovich Effect (SZE). Thereceiver contained a focal plane of280 superconducting transition-edgesensor bolometers equipped with afrequency-domain-multiplexed readoutsystem, and it played a key role in theintroduction of these new, robust, andscalable technologies. With 1-arcminuteresolution, the instrument had a higherinstantaneous sensitivity and covered alarger field of view (22 arcminutes) thanearlier generations of SZE instruments.During its period of operation from 2007to 2010, APEX–SZ was used to imageover 40 clusters and map fields overlappingwith external datasets. This paperbriefly describes the instrument anddata reduction procedure and presentsa cluster image gallery, as well as resultsfor the Bullet cluster, Abell 2204, Abell2163, and a power spectrum analysis inthe XMM-LSS field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy