SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schaefer Stefan) "

Sökning: WFRF:(Schaefer Stefan)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Erdmann, Jeanette, et al. (författare)
  • New susceptibility locus for coronary artery disease on chromosome 3q22.3
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:3, s. 280-282
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a three-stage analysis of genome-wide SNP data in 1,222 German individuals with myocardial infarction and 1,298 controls, in silico replication in three additional genome-wide datasets of coronary artery disease (CAD) and subsequent replication in similar to 25,000 subjects. We identified one new CAD risk locus on 3q22.3 in MRAS (P = 7.44 x 10(-13); OR = 1.15, 95% CI = 1.11-1.19), and suggestive association with a locus on 12q24.31 near HNF1A-C12orf43 (P = 4.81 x 10(-7); OR = 1.08, 95% CI = 1.05-1.11).
  •  
3.
  •  
4.
  • Schunkert, Heribert, et al. (författare)
  • Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:4, s. 153-333
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
  •  
5.
  • Soliveres, Santiago, et al. (författare)
  • Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7617, s. 456-459
  • Tidskriftsartikel (refereegranskat)abstract
    • Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.
  •  
6.
  • Soliveres, Santiago, et al. (författare)
  • Locally rare species influence grassland ecosystem multifunctionality
  • 2016
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 371:1694
  • Tidskriftsartikel (refereegranskat)abstract
    • Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above-and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.
  •  
7.
  • Wild, Philipp S., et al. (författare)
  • A Genome-Wide Association Study Identifies LIPA as a Susceptibility Gene for Coronary Artery Disease
  • 2011
  • Ingår i: Circulation: Cardiovascular Genetics. - : American Heart Association/Lippincott, Williams & Wilkins. - 1942-325X .- 1942-3268. ; 4:4, s. 203-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-eQTL analyses are important to improve the understanding of genetic association results. We performed a genome-wide association and global gene expression study to identify functionally relevant variants affecting the risk of coronary artery disease (CAD). Methods and Results-In a genome-wide association analysis of 2078 CAD cases and 2953 control subjects, we identified 950 single-nucleotide polymorphisms (SNPs) that were associated with CAD at P<10(-3). Subsequent in silico and wet-laboratory replication stages and a final meta-analysis of 21 428 CAD cases and 38 361 control subjects revealed a novel association signal at chromosome 10q23.31 within the LIPA (lysosomal acid lipase A) gene (P=3.7 x 10(-8); odds ratio, 1.1; 95% confidence interval, 1.07 to 1.14). The association of this locus with global gene expression was assessed by genome-wide expression analyses in the monocyte transcriptome of 1494 individuals. The results showed a strong association of this locus with expression of the LIPA transcript (P=1.3 x 10(-96)). An assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association of LIPA transcript levels with impaired endothelial function (P=4.4 x 10(-3)). Conclusions-The use of data on genetic variants and the addition of data on global monocytic gene expression led to the identification of the novel functional CAD susceptibility locus LIPA, located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect LIPA gene expression level, which was related to endothelial dysfunction, a precursor of CAD. (Circ Cardiovasc Genet. 2011;4:403-412.)
  •  
8.
  • Bravo, Andrea Garcia, et al. (författare)
  • Geobacteraceae are important members of mercury-methylating microbial communities of sediments impacted by waste water releases
  • 2018
  • Ingår i: The ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 12, s. 802-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial mercury (Hg) methylation in sediments can result in bioaccumulation of the neurotoxin methylmercury (MMHg) in aquatic food webs. Recently, the discovery of the gene hgcA, required for Hg methylation, revealed that the diversity of Hg methylators is much broader than previously thought. However, little is known about the identity of Hg-methylating microbial organisms and the environmental factors controlling their activity and distribution in lakes. Here, we combined high-throughput sequencing of 16S rRNA and hgcA genes with the chemical characterization of sediments impacted by a waste water treatment plant that releases significant amounts of organic matter and iron. Our results highlight that the ferruginous geochemical conditions prevailing at 1–2 cm depth are conducive to MMHg formation and that the Hgmethylating guild is composed of iron and sulfur-transforming bacteria, syntrophs, and methanogens. Deltaproteobacteria, notably Geobacteraceae, dominated the hgcA carrying communities, while sulfate reducers constituted only a minor component, despite being considered the main Hg methylators in many anoxic aquatic environments. Because iron is widely applied in waste water treatment, the importance of Geobacteraceae for Hg methylation and the complexity of Hgmethylating communities reported here are likely to occur worldwide in sediments impacted by waste water treatment plant discharges and in iron-rich sediments in general.
  •  
9.
  •  
10.
  • Bravo, Andrea G., et al. (författare)
  • Methanogens and iron-reducing bacteria : the overlooked members of mercury-methylating microbial communities in boreal lakes
  • 2018
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 84:23
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the diversity of these mercury-methylating microbial communities remains largely unexplored. Previous studies have implicated sulfate-reducing bacteria as the main mercury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments using high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abundant members of the mercury-methylating communities. In fact, incubation experiments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These results suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes.IMPORTANCE: Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26
Typ av publikation
tidskriftsartikel (24)
annan publikation (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Bertilsson, Stefan (5)
Schaefer, Jeffra K. (4)
Salomaa, Veikko (3)
Melander, Olle (3)
Björn, Erik (3)
Cambien, Francois (3)
visa fler...
Deloukas, Panos (3)
Peters, Annette (3)
Wichmann, H. Erich (3)
Samani, Nilesh J. (3)
Elosua, Roberto (3)
Xu, J (2)
Lindgren, Gabriella (2)
Nilsonne, Gustav (2)
Busch, Niko A. (2)
Dreber Almenberg, An ... (2)
Johannesson, Magnus (2)
Ouwehand, Willem H. (2)
Birkhofer, Klaus (2)
Rader, Daniel J. (2)
Peltonen, Leena (2)
Allan, Eric (2)
Prati, Daniel (2)
Gossner, Martin M. (2)
Boch, Steffen (2)
Jung, Kirsten (2)
Klaus, Valentin H. (2)
Kleinebecker, Till (2)
Krauss, Jochen (2)
Lange, Markus (2)
Morris, E. Kathryn (2)
Pasalic, Esther (2)
Rillig, Matthias C. (2)
Socher, Stephanie A. (2)
Steckel, Juliane (2)
Steffan-Dewenter, In ... (2)
Weiner, Christiane N ... (2)
Werner, Michael (2)
Westphal, Catrin (2)
Wolters, Volkmar (2)
Wubet, Tesfaye (2)
Renner, Swen C. (2)
Buscot, Francois (2)
Weisser, Wolfgang W. (2)
Fischer, Markus (2)
Jakobsson, J. (2)
Meitinger, Thomas (2)
Bozhkov, Peter (2)
Rubin, Carl-Johan (2)
Müller, Jörg (2)
visa färre...
Lärosäte
Uppsala universitet (10)
Lunds universitet (8)
Karolinska Institutet (7)
Umeå universitet (6)
Sveriges Lantbruksuniversitet (6)
Stockholms universitet (5)
visa fler...
Linköpings universitet (2)
Handelshögskolan i Stockholm (2)
Chalmers tekniska högskola (2)
Malmö universitet (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (26)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Medicin och hälsovetenskap (11)
Lantbruksvetenskap (3)
Teknik (1)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy