SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schaffrath Raffael) "

Sökning: WFRF:(Schaffrath Raffael)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mehlgarten, Constance, et al. (författare)
  • Elongator function in tRNA wobble uridine modification is conserved between yeast and plants
  • 2010
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 76:5, s. 1082-1094
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on studies in yeast and mammalian cells the Elongator complex has been implicated in functions as diverse as histone acetylation, polarized protein trafficking and tRNA modification. Here we show that Arabidopsis mutants lacking the Elongator subunit AtELP3/ELO3 have a defect in tRNA wobble uridine modification. Moreover, we demonstrate that yeast elp3 and elp1 mutants expressing the respective Arabidopsis Elongator homologues AtELP3/ELO3 and AtELP1/ELO2 assemble integer Elongator complexes indicating a high degree of structural conservation. Surprisingly, in vivo complementation studies based on Elongator-dependent tRNA nonsense suppression and zymocin tRNase toxin assays indicated that while AtELP1 rescued defects of a yeast elp1 mutant, the most conserved Elongator gene AtELP3, failed to complement an elp3 mutant. This lack of complementation is due to incompatibility with yeast ELP1 as coexpression of both plant genes in an elp1 elp3 yeast mutant restored Elongator’s tRNA modification function in vivo. Similarly, AtELP1, not ScELP1 also supported partial complementation by yeast-plant Elp3 hybrids suggesting that AtElp1 has less stringent sequence requirements for Elp3 than ScElp1. We conclude that yeast and plant Elongator share tRNA modification roles and propose that this function might be conserved in Elongator from all eukaryotic kingdoms of life.
  •  
2.
  • Shankar, Suma P., et al. (författare)
  • A novel DPH5-related diphthamide-deficiency syndrome causing embryonic lethality or profound neurodevelopmental disorder
  • 2022
  • Ingår i: Genetics in Medicine. - : Elsevier BV. - 1098-3600 .- 1530-0366. ; 24:7, s. 1567-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Diphthamide is a post-translationally modified histidine essential for messenger RNA translation and ribosomal protein synthesis. We present evidence for DPH5 as a novel cause of embryonic lethality and profound neurodevelopmental delays (NDDs). Methods: Molecular testing was performed using exome or genome sequencing. A targeted Dph5 knockin mouse (C57BL/6Ncrl-Dph5em1Mbp/Mmucd) was created for a DPH5 p.His260Arg homozygous variant identified in 1 family. Adenosine diphosphate–ribosylation assays in DPH5-knockout human and yeast cells and in silico modeling were performed for the identified DPH5 potential pathogenic variants. Results: DPH5 variants p.His260Arg (homozygous), p.Asn110Ser and p.Arg207Ter (heterozygous), and p.Asn174LysfsTer10 (homozygous) were identified in 3 unrelated families with distinct overlapping craniofacial features, profound NDDs, multisystem abnormalities, and miscarriages. Dph5 p.His260Arg homozygous knockin was embryonically lethal with only 1 subviable mouse exhibiting impaired growth, craniofacial dysmorphology, and multisystem dysfunction recapitulating the human phenotype. Adenosine diphosphate–ribosylation assays showed absent to decreased function in DPH5-knockout human and yeast cells. In silico modeling of the variants showed altered DPH5 structure and disruption of its interaction with eEF2. Conclusion: We provide strong clinical, biochemical, and functional evidence for DPH5 as a novel cause of embryonic lethality or profound NDDs with multisystem involvement and expand diphthamide-deficiency syndromes and ribosomopathies.
  •  
3.
  • Xu, Fu, 1988- (författare)
  • Factors modulating tRNA biogenesis and function in Saccharomyces cerevisiae
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Transfer RNA (tRNA) genes are transcribed by RNA polymerase III as precursors that undergo multiple processing steps to form mature tRNAs. These steps include processing of the 5’ leader and 3’ trailer sequences, addition of a 3’ CCA tail, removal of introns, and formation of modified nucleosides. The mature tRNAs carry amino acids to the ribosome where proteins are synthesized. The aim of this thesis is to identify and characterize factors that influence tRNA biogenesis and function in Saccharomyces cerevisiae.Nonsense suppressor tRNAs are encoded by mutated tRNA genes and able to read stop codons. The SUP4 gene encodes such a suppressor tRNA that base-pairs with UAA stop codons. By screening for mutations that impair the nonsense suppression of the SUP4-encoded tRNA, we identified a loss-of-function mutation in the YPK9 gene. Inactivation of Ypk9p causes a reduction in the readthrough of UAA stop codon. We found that phenotypes of ypk9Δ cells including decreased UAA readthrough and sensitivity to Mn2+ are counteracted by increasing the cellular levels of putrescine, one type of polyamine. Importantly, cells lacking Ypk9p show reduced levels of putrescine. Our results suggest that the YPK9 gene product influences the cellular levels of putrescine, which plays a role in maintaining the fidelity of translation termination.The Elongator complex, consisting of Elp1p-Elp6p six proteins, catalyzes the formation of U34 modifications in the anticodon region of 11 tRNA species. Elongator mutants display pleiotropic phenotypes that are caused by decreased tRNA functionality. We found that the genetic background, largely due to a polymorphism at the SSD1 locus, influences the pleiotropic phenotypes of Elongator mutants.In a genetic screen for factors that are essential for the survival of cells encoding a destabilized tRNASerCGA, several gene products were identified. We demonstrate that mutations in these genes result in reduced levels of the destabilized tRNASerCGA, suggesting a role for these gene products in tRNASerCGA biosynthesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy