SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scheepers C) "

Sökning: WFRF:(Scheepers C)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Martin, DP, et al. (författare)
  • Selection analysis identifies unusual clustered mutational changes in Omicron lineage BA.1 that likely impact Spike function
  • 2022
  • Ingår i: bioRxiv : the preprint server for biology. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any genomes within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.
  •  
6.
  • Pecl, Gretta T., et al. (författare)
  • Biodiversity redistribution under climate change : Impacts on ecosystems and human well-being
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 355:6332
  • Forskningsöversikt (refereegranskat)abstract
    • Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals.
  •  
7.
  • Potapov, Anton M., et al. (författare)
  • Global fine-resolution data on springtail abundance and community structure
  • 2024
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.
  •  
8.
  • Potapov, Anton M., et al. (författare)
  • Globally invariant metabolism but density-diversity mismatch in springtails
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
  •  
9.
  •  
10.
  • Escamez, Sacha, 1987-, et al. (författare)
  • Fluorescence Lifetime Imaging as an in Situ and Label-Free Readout for the Chemical Composition of Lignin
  • 2021
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society. - 2168-0485. ; 9:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Naturally fluorescent polymeric molecules such as collagen, resilin, cutin, suberin, or lignin can serve as renewable sources of bioproducts. Theoretical physics predicts that the fluorescence lifetime of these polymers is related to their chemical composition. We verified this prediction for lignin, a major structural element in plant cell walls that form woody biomass. Lignin is composed of different phenylpropanoid units, and its composition affects its properties, biological functions, and the utilization of wood biomass. We carried out fluorescence lifetime imaging microscopy (FLIM) measurements of wood cell wall lignin in a population of 90 hybrid aspen trees genetically engineered to display differences in cell wall chemistry and structure. We also measured the wood cell wall composition by classical analytical methods in these trees. Using statistical modeling and machine learning algorithms, we identified parameters of fluorescence lifetime that predict the content of S-type and G-type lignin units, the two main types of units in the lignin of angiosperm (flowering) plants. In a first step toward tailoring lignin biosynthesis toward improvement of woody biomass feedstocks, we show how FLIM can reveal the dynamics of lignin biosynthesis in two different biological contexts, including in vivo while lignin is being synthesized in the walls of living cells. © 2021 The Authors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy