SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scheunemann Dorothea 1985) "

Sökning: WFRF:(Scheunemann Dorothea 1985)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Jian, 1985, et al. (författare)
  • Electrically Programmed Doping Gradients Optimize the Thermoelectric Power Factor of a Conjugated Polymer
  • 2024
  • Ingår i: Advanced Functional Materials. - 1616-3028 .- 1616-301X. ; 34:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Functionally graded materials (FGMs) are widely explored in the context of inorganic thermoelectrics, but not yet in organic thermoelectrics. Here, the impact of doping gradients on the thermoelectric properties of a chemically doped conjugated polymer is studied. The in-plane drift of counterions in moderate electric fields is used to create lateral doping gradients in films composed of a polythiophene with oligoether side chains, doped with 2,3,5,6-tetrafluoro-tetracyanoquinodimethane (F4TCNQ). Raman microscopy reveals that a bias voltage of as little as 5 V across a 50 µm wide channel is sufficient to trigger counterion drift, resulting in doping gradients. The effective electrical conductivity of the graded channel decreases with bias voltage, while an overall increase in Seebeck coefficient is observed, yielding an up to eight-fold enhancement in power factor. Kinetic Monte Carlo simulations of graded films explain the increase in power factor in terms of a roll-off of the Seebeck coefficient at high electrical conductivities in combination with a mobility decay due to increased Coulomb scattering at high dopant concentrations. Therefore, the FGM concept is found to be a way to improve the thermoelectric performance of not yet optimally doped organic semiconductors, which may ease the screening of new materials as well as the fabrication of devices.
  •  
2.
  • Untilova, Viktoriia, et al. (författare)
  • High Thermoelectric Power Factor of Poly(3-hexylthiophene) through In-Plane Alignment and Doping with a Molybdenum Dithiolene Complex
  • 2020
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 1520-5835 .- 0024-9297. ; 53:15, s. 6314-6321
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a record thermoelectric power factor of up to 160 μW m-1 K-2 for the conjugated polymer poly(3-hexylthiophene) (P3HT). This result is achieved through the combination of high-temperature rubbing of thin films together with the use of a large molybdenum dithiolene p-dopant with a high electron affinity. Comparison of the UV-vis-NIR spectra of the chemically doped samples to electrochemically oxidized material reveals an oxidation level of 10%, i.e., one polaron for every 10 repeat units. The high power factor arises due to an increase in the charge-carrier mobility and hence electrical conductivity along the rubbing direction. We conclude that P3HT, with its facile synthesis and outstanding processability, should not be ruled out as a potential thermoelectric material. ©
  •  
3.
  • Wilken, Sebastian, et al. (författare)
  • How to Reduce Charge Recombination in Organic Solar Cells: There are Still Lessons to Learn from P3HT:PCBM
  • 2021
  • Ingår i: Advanced Electronic Materials. - : Wiley. - 2199-160X .- 2199-160X. ; 7:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Suppressing charge recombination is key for organic solar cells to become commercial reality. However, there is still no conclusive picture of how recombination losses are influenced by the complex nanoscale morphology. Here, new insight is provided by revisiting the P3HT:PCBM blend, which is still one of the best performers regarding reduced recombination. By changing small details in the annealing procedure, two model morphologies are prepared that vary in phase separation, molecular order, and phase purity, as revealed by electron tomography and optical spectroscopy. Both systems behave very similarly with respect to charge generation and transport, but differ significantly in bimolecular recombination. Only the system containing P3HT aggregates of high crystalline quality and purity is found to achieve exceptionally low recombination rates. The high-quality aggregates support charge delocalization, which assists the re-dissociation of interfacial charge-transfer states formed upon the encounter of free carriers. For devices with the optimized morphology, an exceptional long hole diffusion length is found, which allows them to work as Shockley-type solar cells even in thick junctions of 300 nm. In contrast, the encounter rate and the size of the phase-separated domains appear to be less important.
  •  
4.
  • Xu, Kai, et al. (författare)
  • On the Origin of Seebeck Coefficient Inversion in Highly Doped Conducting Polymers
  • 2022
  • Ingår i: Advanced Functional Materials. - : Wiley-V C H Verlag GMBH. - 1616-301X .- 1616-3028. ; 32:20
  • Tidskriftsartikel (refereegranskat)abstract
    • A common way of determining the majority charge carriers of pristine and doped semiconducting polymers is to measure the sign of the Seebeck coefficient. However, a polarity change of the Seebeck coefficient has recently been observed to occur in highly doped polymers. Here, it is shown that the Seebeck coefficient inversion is the result of the density of states filling and opening of a hard Coulomb gap around the Fermi energy at high doping levels. Electrochemical n-doping is used to induce high carrier density (>1 charge/monomer) in the model system poly(benzimidazobenzophenanthroline) (BBL). By combining conductivity and Seebeck coefficient measurements with in situ electron paramagnetic resonance, UV-vis-NIR, Raman spectroelectrochemistry, density functional theory calculations, and kinetic Monte Carlo simulations, the formation of multiply charged species and the opening of a hard Coulomb gap in the density of states, which is responsible for the Seebeck coefficient inversion and drop in electrical conductivity, are uncovered. The findings provide a simple picture that clarifies the roles of energetic disorder and Coulomb interactions in highly doped polymers and have implications for the molecular design of next-generation conjugated polymers.
  •  
5.
  • Yu, Liyang, 1986, et al. (författare)
  • Sequential doping of solid chunks of a conjugated polymer for body-heat-powered thermoelectric modules
  • 2021
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 119:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Sequential doping of 1 mm3 sized cubes of regio-regular poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-tetracyanoquinodimethane is found to result in a doping gradient. The dopant ingresses into the solid material and after two weeks of sequential doping yields a 250 μm thick doped surface layer, while the interior of the cubes remains undoped. The doping gradient is mapped with energy dispersive x-ray spectroscopy (EDX), which is used to estimate a diffusion coefficient of 1 × 10-10 cm2 s-1 at room temperature. The cubes, prepared by pressing at 150 °C, feature alignment of polymer chains along the flow direction, which yields an electrical conductivity of 2.2 S cm-1 in the same direction. A 4-leg thermoelectric module was fabricated with slabs of pressed and doped P3HT, which generated a power of 0.22 μW for a temperature gradient of 10.2 °C generated by body heat.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy