SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schiöth HB) "

Sökning: WFRF:(Schiöth HB)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cerda-Reverter, JM, et al. (författare)
  • Gene structure of the goldfish agouti-signaling protein: : a putative role in the dorsla-ventral pigment pattern of fish
  • 2005
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 146:3, s. 1597-610
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most successful chromatic adaptations in vertebrates is the dorsal-ventral pigment pattern in which the dorsal skin is darkly colored, whereas the ventrum is light. In fish, the latter pattern is achieved because a melanization inhibition factor inhibits melanoblast differentiation and supports iridophore proliferation in the ventrum. In rodents, the patterned pigmentation results from regional production of the agouti-signaling protein (ASP). This peptide controls the switch between production of eumelanin and pheomelanin by antagonizing alphaMSH effects on melanocortin receptor (MCR) 1 in the melanocytes. In addition, ASP inhibits the differentiation and proliferation of melanoblast. Thus, the mammalian ASP may be homologous to the poikilotherm melanization inhibition factor. By screening of a genomic library, we deduced the amino acid sequence of goldfish ASP. The ASP gene is a four-exon gene spanning 3097 bp that encodes a 125-amino acid precursor. Northern blot analysis identified two different ASP mRNAs in ventral skin of red- and black-pigmented and albino fish, but no expression levels were observed in the dorsal skin of the same fish. The dorsal-ventral expression polarity was also detected in both black dorsally pigmented fish and albino fish. Pharmacological studies demonstrate that goldfish ASP acts as a melanocortin antagonist at Fugu MC1R and goldfish MC4R. In addition, goldfish ASP inhibited Nle4, D-Phe7-MSH-stimulated pigment dispersion in medaka melanophores. Our studies support agouti signaling protein as the melanization inhibition factor, a key factor in the development of the dorsal-ventral pigment pattern in fish.
  •  
2.
  •  
3.
  • Klovins, Janis, et al. (författare)
  • The melanocortin system in Fugu: determination of POMC/AGRP/MCR gene repertoire and synteny, as well as pharmacology and anatomical distribution of the MCRs
  • 2004
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 21:3, s. 563-79
  • Tidskriftsartikel (refereegranskat)abstract
    • The G-protein-coupled melanocortin receptors (MCRs) play an important role in a variety of essential functions such as the regulation of pigmentation, energy homeostasis, and steroid production. We performed a comprehensive characterization of the MC system in Fugu (Takifugu rubripes). We show that Fugu has an AGRP gene with high degree of conservation in the C-terminal region in addition to a POMC gene lacking gamma-MSH. The Fugu genome contains single copies of four MCRs, whereas the MC3R is missing. The MC2R and MC5R are found in tandem and remarkably contain one and two introns, respectively. We suggest that these introns were inserted through a reverse splicing mechanism into the DRY motif that is widely conserved through GPCRs. We were able to assemble large blocks around the MCRs in Fugu, showing remarkable synteny with human chromosomes 16 and 18. Detailed pharmacological characterization showed that ACTH had surprisingly high affinity for the Fugu MC1R and MC4R, whereas alpha-MSH had lower affinity. We also showed that the MC2R gene in Fugu codes for an ACTH receptor, which did not respond to alpha-MSH. All the Fugu receptors were able to couple functionally to cAMP production in line with the mammalian orthologs. The anatomical characterization shows that the MC2R is expressed in the brain in addition to the head-kidney, whereas the MC4R and MC5R are found in both brain regions and peripheral tissues. This is the first comprehensive genomic and functional characterization of a GPCR family within the Fugu genome. The study shows that some parts of the MC system are highly conserved through vertebrate evolution, such as regions in POMC coding for ACTH, alpha-MSH, and beta-MSH, the C-terminal region of AGRP, key binding units within the MC1R, MC2R, MC4R, and MC5R, synteny blocks around the MCRs, pharmacological properties of the MC2R, whereas other parts in the system are either missing, such as the MC3R and gamma-MSH, or different as compared to mammals, such as the affinity of ACTH and MSH peptides to MC1R and MC4R and the anatomical expression pattern of the MCRs.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy