SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schiemann William P.) "

Sökning: WFRF:(Schiemann William P.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cossarizza, A., et al. (författare)
  • Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
  • 2019
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 49:10, s. 1457-1973
  • Tidskriftsartikel (refereegranskat)abstract
    • These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
  •  
2.
  • Blobe, Gerard C., et al. (författare)
  • Functional roles for the cytoplasmic domain of the type III transforming growth factor beta receptor in regulating transforming growth factor beta signaling.
  • 2001
  • Ingår i: J Biol Chem. - 0021-9258. ; 276:27, s. 24627-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming growth factor beta (TGF-beta) signals through three high affinity cell surface receptors, TGF-beta type I, type II, and type III receptors. The type III receptor, also known as betaglycan, binds to the type II receptor and is thought to act solely by "presenting" the TGF-beta ligand to the type II receptor. The short cytoplasmic domain of the type III receptor is thought to have no role in TGF-beta signaling because deletion of this domain has no effect on association with the type II receptor, or with the presentation role of the type III receptor. Here we demonstrate that the cytoplasmic domains of the type III and type II receptors interact specifically in a manner dependent on the kinase activity of the type II receptor and the ability of the type II receptor to autophosphorylate. This interaction results in the phosphorylation of the cytoplasmic domain of the type III receptor by the type II receptor. The type III receptor with the cytoplasmic domain deleted is able to bind TGF-beta, to bind the type II receptor, and to enhance TGF-beta binding to the type II receptor but is unable to enhance TGF-beta2 signaling, determining that the cytoplasmic domain is essential for some functions of the type III receptor. The type III receptor functions by selectively binding the autophosphorylated type II receptor via its cytoplasmic domain, thus promoting the preferential formation of a complex between the autophosphorylated type II receptor and the type I receptor and then dissociating from this active signaling complex. These studies, for the first time, elucidate important functional roles of the cytoplasmic domain of the type III receptor and demonstrate that these roles are essential for regulating TGF-beta signaling.
  •  
3.
  • Ibarrola, Nieves, et al. (författare)
  • Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling.
  • 2004
  • Ingår i: BMC Cell Biology. - 1471-2121. ; 5:1, s. 2-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Transforming growth factor-betas (TGF-betas), bone morphogenetic proteins (BMPs) and activins are important regulators of developmental cell growth and differentiation. Signaling by these factors is mediated chiefly by the Smad family of latent transcription factors. RESULTS: There are a large number of uncharacterized cDNA clones that code for novel proteins with homology to known signaling molecules. We have identified a novel molecule from the HUGE database that is related to a previously known molecule, AMSH (associated molecule with the SH3 domain of STAM), an adapter shown to be involved in BMP signaling. Both of these molecules contain a coiled-coil domain located within the amino-terminus region and a JAB (Domain in Jun kinase activation domain binding protein and proteasomal subunits) domain at the carboxy-terminus. We show that this novel molecule, which we have designated AMSH-2, is widely expressed and its overexpression potentiates activation of TGF-beta-dependent promoters. Coimmunoprecipitation studies indicated that Smad7 and Smad2, but not Smad3 or 4, interact with AMSH-2. We show that overexpression of AMSH-2 decreases the inhibitory effect of Smad7 on TGF-beta signaling. Finally, we demonstrate that knocking down AMSH-2 expression by RNA interference decreases the activation of 3TP-lux reporter in response to TGF-beta. CONCLUSIONS: This report implicates AMSH and AMSH-2 as a novel family of molecules that positively regulate the TGF-beta signaling pathway. Our results suggest that this effect could be partially explained by AMSH-2 mediated decrease of the action of Smad7 on TGF-beta signaling pathway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy