SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schilling Marcel) "

Sökning: WFRF:(Schilling Marcel)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bachmann, Julie, et al. (författare)
  • Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range
  • 2011
  • Ingår i: Molecular Systems Biology. - : Nature Publishing Group / European Molecular Biology Organization. - 1744-4292 .- 1744-4292. ; 7:516
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.
  •  
2.
  • Leebens-Mack, James H., et al. (författare)
  • One thousand plant transcriptomes and the phylogenomics of green plants
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 574:7780, s. 679-
  • Tidskriftsartikel (refereegranskat)abstract
    • Green plants (Viridiplantae) include around 450,000-500,000 species(1,2) of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
  •  
3.
  • Maiwald, Thomas, et al. (författare)
  • In silico labeling reveals the time-dependent label half-life and transit-time in dynamical systems
  • 2012
  • Ingår i: BMC Systems Biology. - : BioMed Central. - 1752-0509. ; 6:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mathematical models of dynamical systems facilitate the computation of characteristic properties that are not accessible experimentally. In cell biology, two main properties of interest are (1) the time-period a protein is accessible to other molecules in a certain state - its half-life - and (2) the time it spends when passing through a subsystem - its transit-time. We discuss two approaches to quantify the half-life, present the novel method of in silico labeling, and introduce the label half-life and label transit-time. The developed method has been motivated by laboratory tracer experiments. To investigate the kinetic properties and behavior of a substance of interest, we computationally label this species in order to track it throughout its life cycle. The corresponding mathematical model is extended by an additional set of reactions for the labeled species, avoiding any double-counting within closed circuits, correcting for the influences of upstream fluxes, and taking into account combinatorial multiplicity for complexes or reactions with several reactants or products. A profile likelihood approach is used to estimate confidence intervals on the label half-life and transit-time. Results: Application to the JAK-STAT signaling pathway in Epo-stimulated BaF3-EpoR cells enabled the calculation of the time-dependent label half-life and transit-time of STAT species. The results were robust against parameter uncertainties. Conclusions: Our approach renders possible the estimation of species and label half-lives and transit-times. It is applicable to large non-linear systems and an implementation is provided within the PottersWheel modeling framework (http://www.potterswheel.de).
  •  
4.
  • Schroeder, Julia, et al. (författare)
  • MicroRNA-138 is a potential regulator of memory performance in humans
  • 2014
  • Ingår i: Frontiers in Human Neuroscience. - : Frontiers Media SA. - 1662-5161. ; 8, s. 501-
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic factors underlie a substantial proportion of individual differences in cognitive functions in humans, including processes related to episodic and working memory. While genetic association studies have proposed several candidate memory genes, these currently explain only a minor fraction of the phenotypic variance. Here, we performed genome-wide screening on 13 episodic and working memory phenotypes in 1318 participants of the Berlin Aging Study II aged 60 years or older. The analyses highlight a number of novel single nucleotide polymorphisms (SNPs) associated with memory performance, including one located in a putative regulatory region of microRNA (miRNA) hsa-mir-138-5p (rs9882688, P-value = 7.8 x 10(-9)). Expression quantitative trait locus analyses on next-generation RNA-sequencing data revealed that rs9882688 genotypes show a significant correlation with the expression levels of this miRNA in 309 human lymphoblastoid cell lines (P-value = 5 x 10(-4)). In silico modeling of other top-ranking GWAS signals identified an additional memory-associated SNP in the 3' untranslated region (3' UTR) of DCP1B, a gene encoding a core component of the mRNA decapping complex in humans, predicted to interfere with hsa-mir-138-5p binding. This prediction was confirmed in vitro by luciferase assays showing differential binding of hsa-mir-138-5p to 3' UTR reporter constructs in two human cell lines (HEK293: P-value = 0.0470; SH-SY5Y: P-value = 0.0866). Finally, expression profiling of hsa-mir-138-5p and DCP1B mRNA in human post-mortem brain tissue revealed that both molecules are expressed simultaneously in frontal cortex and hippocampus, suggesting that the proposed interaction between hsa-mir-138-5p and DCP1B may also take place in vivo. In summary, by combining unbiased genome-wide screening with extensive in silico modeling, in vitro functional assays, and gene expression profiling, our study identified miRNA-138 as a potential molecular regulator of human memory function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy